
SafeNet Luna Network HSMClient 10.1
SDK REFERENCE GUIDE

Document Information

Product Version 10.1

Document Part Number 007-000553-001

Release Date 23 January 2020

Revision History

Revision Date Reason

Rev. A 23 January 2020 Initial release

Trademarks, Copyrights, and Third-Party Software
Copyright 2001-2020 Thales. All rights reserved. Thales and the Thales logo are trademarks and service
marks of Thales and/or its subsidiaries and are registered in certain countries. All other trademarks and service
marks, whether registered or not in specific countries, are the property of their respective owners.

Disclaimer
All information herein is either public information or is the property of and owned solely by Thales and/or its
subsidiaries who shall have and keep the sole right to file patent applications or any other kind of intellectual
property protection in connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise,
under any intellectual and/or industrial property rights of or concerning any of Thales’s information.

This document can be used for informational, non-commercial, internal, and personal use only provided that:

> The copyright notice, the confidentiality and proprietary legend and this full warning notice appear in all
copies.

> This document shall not be posted on any publicly accessible network computer or broadcast in any media,
and no modification of any part of this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless
otherwise expressly agreed in writing, Thales makes no warranty as to the value or accuracy of information
contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Furthermore, Thales reserves the right to make any change or improvement in the
specifications data, information, and the like described herein, at any time.

Thales hereby disclaims all warranties and conditions with regard to the information contained herein,
including all implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In
no event shall Thales be liable, whether in contract, tort or otherwise, for any indirect, special or consequential

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 2

damages or any damages whatsoever including but not limited to damages resulting from loss of use, data,
profits, revenues, or customers, arising out of or in connection with the use or performance of information
contained in this document.

Thales does not and shall not warrant that this product will be resistant to all possible attacks and shall not
incur, and disclaims, any liability in this respect. Even if each product is compliant with current security
standards in force on the date of their design, security mechanisms' resistance necessarily evolves according
to the state of the art in security and notably under the emergence of new attacks. Under no circumstances,
shall Thales be held liable for any third party actions and in particular in case of any successful attack against
systems or equipment incorporating Thales products. Thales disclaims any liability with respect to security for
direct, indirect, incidental or consequential damages that result from any use of its products. It is further
stressed that independent testing and verification by the person using the product is particularly encouraged,
especially in any application in which defective, incorrect or insecure functioning could result in damage to
persons or property, denial of service, or loss of privacy.

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the
copyright of their respective owners. No part of this document may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical, chemical, photocopy, recording or
otherwise without the prior written permission of Thales Group.

Regulatory Compliance
This product complies with the following regulatory regulations. To ensure compliancy, ensure that you install
the products as specified in the installation instructions and use only Thales-supplied or approved accessories.

USA, FCC
This equipment has been tested and found to comply with the limits for a “Class B” digital device, pursuant to
part 15 of the FCC rules.

Canada
This class B digital apparatus meets all requirements of the Canadian interference-causing equipment
regulations.

Europe
This product is in conformity with the protection requirements of EC Council Directive 2014/30/EU. This product
satisfies the CLASSB limits of EN55032.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 3

CONTENTS

Preface: About the SDK Reference Guide 13
Customer Release Notes 13
Audience 13
Document Conventions 14
Support Contacts 16

Chapter 1: SafeNet SDK Overview 17
Supported Cryptographic Algorithms 17
Application Programming Interface (API) Overview 17
Sample Application 18
ANote About RSAKey Attributes ‘p’ and ‘q’ 19

What Does 'Supported' Mean? 19
Why Is an Integration Not Listed Here Or On the Website? 20

Frequently Asked Questions 20

Chapter 2: PKCS#11 Support 23
PKCS#11 Compliance 23
Supported PKCS#11 Services 23
Additional Functions 27

Using the PKCS#11 Sample 27
The SfntLibPath Environment Variable 27
What p11Sample Does 27

Chapter 3: Extensions to PKCS#11 29
SafeNet Luna Extensions to PKCS#11 29
HSM Configuration Settings 40
SafeNet Luna Network HSM-Specific Commands 40
Commands Not Available Through Libraries 40
Configuration Settings 41

Secure PIN Port Authentication 41
High Availability Indirect Login Functions 41
Initialization functions 42
Recovery Functions 42
Login Key Attributes 44
Control of HA Functionality 44

MofN Secret Sharing (quorum or multi-person access control) 44
Key Export Features 45
RSAKey Component Wrapping 45

Derivation of Symmetric Keys with 3DES_ECB 47
PKCS#11 Extension HAStatus Call 48
Function Definition 48

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 4

Counter Mode KDF Mechanisms 48
BIP32 Mechanism Support and Implementation 49
Curve Support 49
Key Type and Form 49
Extended Keys and Hardened Keys 49
Key Derivation 50
Error Codes 51
Key Attributes 51
Public Key Import/Export 52
Private Key Import/Export 53
Key Backup and Cloning 53
Non-FIPS Algorithm 53
Host Tools 53
Code Samples 53

Derive Template 57
Examples 57

Chapter 4: Supported Mechanisms 60
CKM_AES_CBC 60
CKM_AES_CBC_ENCRYPT_DATA 61
CKM_AES_CBC_PAD 62
CKM_AES_CBC_PAD_IPSEC 63
CKM_AES_CFB8 64
CKM_AES_CFB128 65
CKM_AES_CMAC 66
CKM_AES_CMAC_GENERAL 67
CKM_AES_CTR 68
CKM_AES_ECB 69
CKM_AES_ECB_ENCRYPT_DATA 70
CKM_AES_GCM 71
CKM_AES_GMAC 73
CKM_AES_KEY_GEN 75
CKM_AES_KW 76
CKM_AES_KWP 77
CKM_AES_MAC 78
CKM_AES_MAC_GENERAL 79
CKM_AES_OFB 80
CKM_AES_XTS 81
CKM_ARIA_CBC 82
CKM_ARIA_CBC_ENCRYPT_DATA 83
CKM_ARIA_CBC_PAD 84
CKM_ARIA_CFB8 85
CKM_ARIA_CFB128 86
CKM_ARIA_CMAC 87
CKM_ARIA_CMAC_GENERAL 88
CKM_ARIA_CTR 89
CKM_ARIA_ECB 90

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 5

CKM_ARIA_ECB_ENCRYPT_DATA 91
CKM_ARIA_KEY_GEN 92
CKM_ARIA_L_CBC 93
CKM_ARIA_L_CBC_PAD 94
CKM_ARIA_L_ECB 95
CKM_ARIA_L_MAC 96
CKM_ARIA_L_MAC_GENERAL 97
CKM_ARIA_MAC 98
CKM_ARIA_MAC_GENERAL 99
CKM_ARIA_OFB 100
CKM_BIP32_CHILD_DERIVE 101
CKM_BIP32_MASTER_DERIVE 102
CKM_CAST3_CBC 103
CKM_CAST3_CBC_PAD 104
CKM_CAST3_ECB 105
CKM_CAST3_KEY_GEN 106
CKM_CAST3_MAC 107
CKM_CAST3_MAC_GENERAL 108
CKM_CAST5_CBC 109
CKM_CAST5_CBC_PAD 110
CKM_CAST5_ECB 111
CKM_CAST5_KEY_GEN 112
CKM_CAST5_MAC 113
CKM_CAST5_MAC_GENERAL 114
CKM_DES_CBC 115
CKM_DES_CBC_ENCRYPT_DATA 116
CKM_DES_CBC_PAD 117
CKM_DES_CFB8 118
CKM_DES_CFB64 119
CKM_DES_ECB 120
CKM_DES_ECB_ENCRYPT_DATA 121
CKM_DES_KEY_GEN 122
CKM_DES_MAC 123
CKM_DES_MAC_GENERAL 124
CKM_DES_OFB64 125
CKM_DES2_DUKPT_DATA 126
CKM_DES2_DUKPT_DATA_RESP 128
CKM_DES2_DUKPT_MAC 130
CKM_DES2_DUKPT_MAC_RESP 132
CKM_DES2_DUKPT_PIN 134
CKM_DES2_KEY_GEN 136
CKM_DES3_CBC 137
CKM_DES3_CBC_ENCRYPT_DATA 138
CKM_DES3_CBC_PAD 139
CKM_DES3_CBC_PAD_IPSEC 140
CKM_DES3_CMAC 141
CKM_DES3_CMAC_GENERAL 142

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 6

CKM_DES3_CTR 143
CKM_DES3_ECB 144
CKM_DES3_ECB_ENCRYPT_DATA 145
CKM_DES3_KEY_GEN 146
CKM_DES3_MAC 147
CKM_DES3_MAC_GENERAL 148
CKM_DES3_X919_MAC 149
CKM_DH_PKCS_DERIVE 151
CKM_DH_PKCS_KEY_PAIR_GEN 152
CKM_DH_PKCS_PARAMETER_GEN 153
CKM_DSA 154
CKM_DSA_KEY_PAIR_GEN 155
CKM_DSA_PARAMETER_GEN 156
CKM_DSA_SHA1 157
CKM_DSA_SHA224 158
CKM_DSA_SHA256 159
CKM_EC_EDWARDS_KEY_PAIR_GEN 160
CKM_EC_KEY_PAIR_GEN 161
CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS 162
CKM_EC_MONTGOMERY_KEY_PAIR_GEN 163
CKM_ECDH1_COFACTOR_DERIVE 164
CKM_ECDH1_DERIVE 165
CKM_ECDSA 166
CKM_ECDSA_GBCS_SHA256 167
CKM_ECDSA_SHA1 168
CKM_ECDSA_SHA224 169
CKM_ECDSA_SHA256 170
CKM_ECDSA_SHA384 171
CKM_ECDSA_SHA512 172
CKM_ECIES 173
CKM_EDDSA 174
CKM_EDDSA_NACL 176
CKM_GENERIC_SECRET_KEY_GEN 177
CKM_HAS160 178
CKM_KCDSA_HAS160 179
CKM_KCDSA_HAS160_NO_PAD 180
CKM_KCDSA_KEY_PAIR_GEN 181
CKM_KCDSA_PARAMETER_GEN 182
CKM_KCDSA_SHA1 183
CKM_KCDSA_SHA1_NO_PAD 184
CKM_KCDSA_SHA224 185
CKM_KCDSA_SHA224_NO_PAD 186
CKM_KCDSA_SHA256 187
CKM_KCDSA_SHA256_NO_PAD 188
CKM_KCDSA_SHA384 189
CKM_KCDSA_SHA384_NO_PAD 190
CKM_KCDSA_SHA512 191

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 7

CKM_KCDSA_SHA512_NO_PAD 192
CKM_KEY_WRAP_SET_OAEP 193
CKM_MD2 194
CKM_MD2_KEY_DERIVATION 195
CKM_MD5_HMAC 196
CKM_MD5_HMAC_GENERAL 197
CKM_MD5_KEY_DERIVATION 198
CKM_NIST_PRF_KDF 199
CKM_PBE_MD2_DES_CBC 201
CKM_PBE_SHA1_CAST5_CBC 202
CKM_PBE_SHA1_DES2_EDE_CBC 203
CKM_PBE_SHA1_DES2_EDE_CBC_OLD 204
CKM_PBE_SHA1_DES3_EDE_CBC 205
CKM_PBE_SHA1_DES3_EDE_CBC_OLD 206
CKM_PBE_SHA1_RC2_40_CBC 207
CKM_PBE_SHA1_RC2_128_CBC 208
CKM_PBE_SHA1_RC4_40 209
CKM_PBE_SHA1_RC4_128 210
CKM_PKCS5_PBKD2 211
CKM_PRF_KDF 212
CKM_RC2_CBC 214
CKM_RC2_CBC_PAD 215
CKM_RC2_ECB 216
CKM_RC2_KEY_GEN 217
CKM_RC2_MAC 218
CKM_RC2_MAC_GENERAL 219
CKM_RC4 220
CKM_RC4_KEY_GEN 221
CKM_RC5_CBC 222
CKM_RC5_CBC_PAD 223
CKM_RC5_ECB 224
CKM_RC5_KEY_GEN 225
CKM_RC5_MAC 226
CKM_RC5_MAC_GENERAL 227
CKM_RSA_FIPS_186_3_AUX_PRIME_KEY_PAIR_GEN 228
CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN 229
CKM_RSA_PKCS 230
CKM_RSA_PKCS_KEY_PAIR_GEN 231
CKM_RSA_PKCS_OAEP 232
CKM_RSA_PKCS_PSS 233
CKM_RSA_X_509 234
CKM_RSA_X9_31 235
CKM_RSA_X9_31_KEY_PAIR_GEN 236
CKM_RSA_X9_31_NON_FIPS 237
CKM_SEED_CBC 238
CKM_SEED_CBC_PAD 239
CKM_SEED_CMAC 240

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 8

CKM_SEED_CMAC_GENERAL 241
CKM_SEED_CTR 242
CKM_SEED_ECB 243
CKM_SEED_KEY_GEN 244
CKM_SEED_MAC 245
CKM_SEED_MAC_GENERAL 246
CKM_SHA_1 247
CKM_SHA_1_HMAC 248
CKM_SHA_1_HMAC_GENERAL 249
CKM_SHA1_EDDSA 250
CKM_SHA1_EDDSA_NACL 251
CKM_SHA1_KEY_DERIVATION 252
CKM_SHA1_RSA_PKCS 253
CKM_SHA1_RSA_PKCS_PSS 254
CKM_SHA1_RSA_X9_31 255
CKM_SHA1_RSA_X9_31_NON_FIPS 256
CKM_SHA224 257
CKM_SHA224_EDDSA 258
CKM_SHA224_EDDSA_NACL 259
CKM_SHA224_HMAC 260
CKM_SHA224_HMAC_GENERAL 261
CKM_SHA224_KEY_DERIVATION 262
CKM_SHA224_RSA_PKCS 263
CKM_SHA224_RSA_PKCS_PSS 264
CKM_SHA224_RSA_X9_31 265
CKM_SHA224_RSA_X9_31_NON_FIPS 266
CKM_SHA256 267
CKM_SHA256_EDDSA 268
CKM_SHA256_EDDSA_NACL 269
CKM_SHA256_HMAC 270
CKM_SHA256_HMAC_GENERAL 271
CKM_SHA256_KEY_DERIVATION 272
CKM_SHA256_RSA_PKCS 273
CKM_SHA256_RSA_PKCS_PSS 274
CKM_SHA256_RSA_X9_31 275
CKM_SHA256_RSA_X9_31_NON_FIPS 276
CKM_SHA384 277
CKM_SHA384_EDDSA 278
CKM_SHA384_EDDSA_NACL 279
CKM_SHA384_HMAC 280
CKM_SHA384_HMAC_GENERAL 281
CKM_SHA384_KEY_DERIVATION 282
CKM_SHA384_RSA_PKCS 283
CKM_SHA384_RSA_PKCS_PSS 284
CKM_SHA384_RSA_X9_31 285
CKM_SHA384_RSA_X9_31_NON_FIPS 286
CKM_SHA512 287

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 9

CKM_SHA512_EDDSA 288
CKM_SHA512_EDDSA_NACL 289
CKM_SHA512_HMAC 290
CKM_SHA512_HMAC_GENERAL 291
CKM_SHA512_KEY_DERIVATION 292
CKM_SHA512_RSA_PKCS 293
CKM_SHA512_RSA_PKCS_PSS 294
CKM_SHA512_RSA_X9_31 295
CKM_SHA512_RSA_X9_31_NON_FIPS 296
CKM_SM3 297
CKM_SM3_HMAC 298
CKM_SM3_HMAC_GENERAL 299
CKM_SM3_KEY_DERIVATION 300
CKM_SSL3_KEY_AND_MAC_DERIVE 301
CKM_SSL3_MASTER_KEY_DERIVE 302
CKM_SSL3_MD5_MAC 303
CKM_SSL3_PRE_MASTER_KEY_GEN 304
CKM_SSL3_SHA1_MAC 305
CKM_X9_42_DH_DERIVE 306
CKM_X9_42_DH_HYBRID_DERIVE 307
CKM_X9_42_DH_KEY_PAIR_GEN 308
CKM_X9_42_DH_PARAMETER_GEN 309
CKM_XOR_BASE_AND_DATA_W_KDF 310

Chapter 5: Using the SafeNet SDK 311
Libraries and Applications 311
SafeNet SDKApplications General Information 311
Compiler Tools 312
Using CKlog 313

Application IDs 315
Shared Login State and Application IDs 315

Named Curves and User-Defined Parameters 319
Curve Validation Limitations 319
Storing Domain Parameters 319
Using Domain Parameters 320
User Friendly Encoder 320
Application Interfaces 320

Supported ECCCurves 326
Capability and Policy Configuration Control Using the SafeNet API 329
HSM Capabilities and Policies 329
HSM Partition Capabilities and Policies 330
Policy Refinement 330
Policy Types 330
Querying and Modifying HSM Configuration 331

Connection Timeout 333
Linux and Unix Connection Timeout 333
Windows Connection Timeout 334

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 10

Chapter 6: Design Considerations 335
PED-Authenticated HSMs 335
About CKDemo with Luna PED 336
Interchangeability 336
Startup 337
Cloning of Tokens 337

High Availability (HA) Implementations 337
Detecting the Failure of an HAMember 338

Key Attribute Defaults 339
Vendor-defined key attributes 341

Object Usage Count 341
Migrating Keys From Software to a SafeNet Luna Network HSM 344
Other Formats of Key Material 346
Sample Program 346

Audit Logging 368
Audit Log Records 368
Audit Log Message Format 369
Log External 370

Chapter 7: Java Interfaces 371
SafeNet JSPOverview and Installation 371
Installation 372
JSPRegistration 373
Post-Installation Tasks 374

SafeNet JSPConfiguration 376
SafeNet Java Security Provider 376
Keytool 379
Cleaning Up 379
PKCS#11/JCA Interaction 379

The JCPROVPKCS#11 Java Wrapper 380
JCPROVOverview 380
Installing JCPROV 381
JCPROVSample Programs 381
JCPROVSample Classes 382
JCPROVAPI Documentation 386

Java or JSPErrors 386
Re-Establishing a Connection Between Your Java Application and SafeNet Luna Network HSM 387
Recovering From the Loss of All HAMembers 387
When to Use the reinitialize Method 388
Why the Method Must Be Used 388
What Happens on the HSM 388

Using Java Keytool with SafeNet Luna Network HSM 390
Limitations 390

Keytool Usage and Examples 391
Import CA certificate 391
Generate private key 392
Create the CSR 393

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 11

Import client certificate 393
How to build a certificate with chain ... 394
Additional minor notes 394

Chapter 8: Microsoft Interfaces 396
SafeNet CSPRegistration Utilities 396
register 396
ms2Luna 398
keymap 399

SafeNet KSP for CNG Registration Utilities 400
kspcmd 400
KspConfig 402
ms2Luna 403
ksputil 404
Algorithms Supported 404

SafeNet CSPCalls and Functions 405
Programming for SafeNet Luna Network HSM with SafeNet CSP 406
Algorithms 407

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 12

PREFACE: About the SDK Reference Guide

This document describes how to use the SafeNet SDK to create applications that interact with SafeNet Luna
Network HSMs. It contains the following chapters:

> "SafeNet SDK Overview" on page 17

> "PKCS#11 Support" on page 23

> "Extensions to PKCS#11" on page 29

> "SupportedMechanisms" on page 60

> "Using the SafeNet SDK" on page 311

> "Design Considerations" on page 335

> "Java Interfaces" on page 371

> "Microsoft Interfaces" on page 396
The preface includes the following information about this document:

> "Customer Release Notes" below

> "Audience" below

> "Document Conventions" on the next page

> "Support Contacts" on page 16

For information regarding the document status and revision history, see "Document Information" on page 2.

Customer Release Notes
The customer release notes (CRN) provide important information about this release that is not included in the
customer documentation. Read the CRN to fully understand the capabilities, limitations, and known issues for
this release. You can view or download the latest version of the CRN from the Technical Support Customer
Portal at https://supportportal.gemalto.com.

Audience
This document is intended for personnel responsible for maintaining your organization's security
infrastructure. This includes SafeNet Luna HSM users and security officers, key manager administrators, and
network administrators.

All products manufactured and distributed by Thales Group are designed to be installed, operated, and
maintained by personnel who have the knowledge, training, and qualifications required to safely perform the
tasks assigned to them. The information, processes, and procedures contained in this document are intended
for use by trained and qualified personnel only.

It is assumed that the users of this document are proficient with security concepts.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 13

https://supportportal.gemalto.com/

Preface: About the SDKReference Guide

Document Conventions
This document uses standard conventions for describing the user interface and for alerting you to important
information.

Notes
Notes are used to alert you to important or helpful information. They use the following format:

NOTE Take note. Contains important or helpful information.

Cautions
Cautions are used to alert you to important information that may help prevent unexpected results or data loss.
They use the following format:

CAUTION! Exercise caution. Contains important information that may help prevent
unexpected results or data loss.

Warnings
Warnings are used to alert you to the potential for catastrophic data loss or personal injury. They use the
following format:

WARNING Be extremely careful and obey all safety and security measures. In
this situation you might do something that could result in catastrophic data loss or
personal injury.

Command syntax and typeface conventions

Format Convention

bold The bold attribute is used to indicate the following:
> Command-line commands and options (Type dir /p.)
> Button names (Click Save As.)
> Check box and radio button names (Select thePrint Duplex check box.)
> Dialog box titles (On theProtect Document dialog box, click Yes.)
> Field names (User Name: Enter the name of the user.)
> Menu names (On the Filemenu, click Save.) (Click Menu > Go To > Folders.)
> User input (In theDate box, typeApril 1.)

italics In type, the italic attribute is used for emphasis or to indicate a related document. (See the
Installation Guide for more information.)

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 14

Preface: About the SDKReference Guide

Format Convention

<variable> In command descriptions, angle brackets represent variables. Youmust substitute a value for
command line arguments that are enclosed in angle brackets.

[optional]
[<optional>]

Represent optional keywords or <variables> in a command line description. Optionally enter the
keyword or <variable> that is enclosed in square brackets, if it is necessary or desirable to
complete the task.

{a|b|c}
{<a>||<c>}

Represent required alternate keywords or <variables> in a command line description. Youmust
choose one command line argument enclosed within the braces. Choices are separated by vertical
(OR) bars.

[a|b|c]
[<a>||<c>]

Represent optional alternate keywords or variables in a command line description. Choose one
command line argument enclosed within the braces, if desired. Choices are separated by vertical
(OR) bars.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 15

Preface: About the SDKReference Guide

Support Contacts
If you encounter a problem while installing, registering, or operating this product, please refer to the
documentation before contacting support. If you cannot resolve the issue, contact your supplier or Thales
Customer Support.

Thales Customer Support operates 24 hours a day, 7 days a week. Your level of access to this service is
governed by the support plan arrangements made between Thales and your organization. Please consult this
support plan for further information about your entitlements, including the hours when telephone support is
available to you.

Customer Support Portal
The Customer Support Portal, at https://supportportal.gemalto.com, is where you can find solutions for most
common problems. The Customer Support Portal is a comprehensive, fully searchable database of support
resources, including software and firmware downloads, release notes listing known problems and
workarounds, a knowledge base, FAQs, product documentation, technical notes, and more. You can also use
the portal to create and manage support cases.

NOTE You require an account to access the Customer Support Portal. To create a new
account, go to the portal and click on the REGISTER link.

Telephone
The support portal also lists telephone numbers for voice contact. (KB0013367)

Email Support
You can also contact technical support by email at technical.support@gemalto.com.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 16

https://supportportal.gemalto.com/csm
https://supportportal.gemalto.com/csm
https://supportportal.gemalto.com/
https://supportportal.gemalto.com/csm?id=kb_article_view&sys_kb_id=42fb71b4db1be200fe0aff3dbf96199f&sysparm_article=KB0013367
mailto:technical.support@gemalto.com

CHAPTER 1: SafeNet SDKOverview

This chapter provides an overview of the SafeNet Software Development Kit (SDK), a development platform
you can use to integrate a SafeNet Luna Network HSM into your application or system. It contains the following
topics:

> "Supported Cryptographic Algorithms" below

> "Application Programming Interface (API) Overview" below

> "What Does 'Supported' Mean?" on page 19

> "Frequently AskedQuestions" on page 20

Supported Cryptographic Algorithms
The K7 Cryptographic engine supports cryptographic algorithms that include:

> RSA

> DSA

> Diffie-Hellman

> DES and triple DES

> MD2 and MD5

> SHA-1, SHA-224, SHA-256, SHA-384, SHA-512

> RC2, RC4 and RC5

> AES

> PBE

> ECC

> ECIES

> ARIA, SEED

Included with SafeNet Product Software Development Kit is a sample application – and the source code – to
accelerate integration of SafeNet’s cryptographic engine into your system.

Application Programming Interface (API) Overview
The major API provided with SafeNet Product Software Development Kit conforms to RSA Laboratories' Public-
Key Cryptography Standards #11 (PKCS #11) v2.20, as described in "PKCS#11 Support" on page 23. A set of
API services (called PKCS #11 Extensions) designed by SafeNet, augments the services provided by
PKCS#11, as described in "Extensions to PKCS#11" on page 29. The extensions to each API enable optimum
use of SafeNet hardware for commonly used calls and functions, where the unaugmented API would tend to
use software, or to make generic, non-optimized use of available HSMs.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 17

Chapter 1: SafeNet SDKOverview

In addition, support is provided for Microsoft’s cryptographic APIs (CAPI/CNG) (see "Microsoft Interfaces" on
page 396 and Oracle’s Java Security API (see "Java Interfaces" on page 371).
The API is a library – a DLL in Windows, a shared object in Solaris, AIX and Linux – called Chrystoki.
Applications wanting to use token services must connect with Chrystoki.

Platform Key name Libraries

Windows LibNT X:\Program Files\SafeNet\LunaClient\cryptoki.dll

X:\Program Files\SafeNet\LunaClient\cklog201.dll

X:\Program Files\SafeNet\LunaClient\shim.dll

X:\Program
Files\SafeNet\LunaClient\LunaCSP\LunaCSP.dll

C:\WINDOWS\system32\SafeNetKSP.dll

Solaris (64-bit) LibUNIX64 /opt/safenet/lunaclient/lib/libCryptoki2_64.so

/opt/safenet/lunaclient/lib/libcklog2.so

/opt/safenet/lunaclient/lib/libshim_64.so

Linux (64-bit) LibUNIX64 /usr/safenet/lunaclient/lib/libCryptoki2_64.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim_64.so

AIX (64-bit) LibAIX /usr/safenet/lunaclient/lib/libCryptoki2.so

/usr/safenet/lunaclient/lib/libCryptoki2_64.so

/usr/safenet/lunaclient/lib/libcklog2.so

/usr/safenet/lunaclient/lib/libshim.so

Table 1: SafeNet libraries by platform

Sample Application
Included with SafeNet Product Software Development Kit is a sample application – and the source code – to
accelerate integration of SafeNet’s cryptographic engine into your system.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 18

Chapter 1: SafeNet SDKOverview

NOTE To reduce development or adaptation time, you may re-distribute the salogin
program to customers who use SafeNet Luna Network HSM, in accordance with the terms of
the End User License Agreement. However, you may not re-distribute the SafeNet Software
Development Kit itself.

ANote About RSAKey Attributes ‘p’ and ‘q’
When RSA keys are generated, ‘p’ and ‘q’ components are generated which, theoretically, could be of
considerably different sizes.

Unwrapping
The SafeNet Luna Network HSM allows RSA private keys to be unwrapped onto the HSM where the lengths of
the ‘p’ and ‘q’ components are unequal. Because the effective strength of an RSA key pair is determined by the
length of the shorter component, choosing ‘p’ and ‘q’ to be of equal length provides the maximum strength from
the generated key pair. If your application is designed to generate key pairs that will be unwrapped onto the
HSM, care should be taken in choosing the lengths of the 'p' and 'q' components such that they differ by no
more than 15%.

Generation
Where you are generating RSA private keys within the HSM, the HSM enforces that ‘p’ and ‘q’ be equal in size,
to the byte level.

A Note About the Shim
The Client install includes a shim library to support PKCS#11 integration with various third-party products. You
should have no need for this shim library in your development. If for some reason you determine that you need
the shim, Chrystoki supports it.

What Does 'Supported' Mean?
With the exception of some generic items that (for example) might need to be set in Windows when installing
CSP, KSP, or Java, we do not include a list of integrations in the main product documentation.

Instead, you can check with the https://supportportal.gemalto.com website for third-party applications that
have been integrated and tested with SafeNet Luna Network HSMs by our Integrations group. That group is
constantly testing and updating third-party integrations and publishing notes and instructions to help you
integrate our HSMs with your applications.

As a general rule, if a specific version of an application and a specific version of a SafeNet Luna Network HSM
product are mentioned in an Integration document, then those items will definitely work together. A newer
version of the SafeNet Luna Network HSM or its attendant software is most likely to work with the indicated
application without problem. We take care, for several generations of a given HSM product, to not break
working relationships, though eventually it might happen that very old versions of third-party software and
systems can no longer be supported. One thing that can sometimes happen is that we update HSM firmware to
include newer algorithms, and to exclude older algorithms or key sizes that no longer meet industry-accepted
standards (like NIST, Common Criteria, etc.).

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 19

https://supportportal.gemalto.com/

Chapter 1: SafeNet SDKOverview

A newer version of a third-party software might, or might not work with SafeNet Luna Network HSMs that were
tested to work with a specific earlier version of the same software. This is because some vendors make
changes in their products that require new adaptation or at least new configuration instructions. If this happens
to you, Thales Customer Support or Sales Engineering is usually happy to work with you to find a solution - both
to support you as one of our customers and to have a revised/new integration that can be added to our
portfolio.

Check the website or contact Thales Customer Support for the latest list of third-party applications that are
tested and supported with SafeNet Luna Network HSMs.

Why Is an Integration Not Listed Here Or On theWebsite?
In many cases, third-party application vendors see a need to integrate their application with Gemalto SafeNet
products. In those cases, the third-party company performs the integration and testing, and also provides the
support for the integrated solution to their customers (including you). For integrations not listed by Thales,
please contact the application vendor for current information.

Similarly some value-added resellers and custom/third-party integrators or consultants might have performed
specific integrations of SafeNet Luna Network HSMs for the benefit of their specific customers. If you have
purchased services or product from such a supplier, you will need to contact them for support of such
integrations.

Third-party-tested integrations are not listed here or on the Thales website library of integration documents
because we have not verified them in our own labs. If you contact Thales Support regarding use of our product
with an application that we have not integrated, you will be asked to contact the third party that performed the
integration.

Frequently AskedQuestions
This section provides additional information by answering questions that are frequently asked by our
customers.

How can we use a SafeNet Luna Network HSM with a Key Manager?
ASafeNet Luna Network HSM could be a Certificate Authority (CA) within your organization, and would operate
in parallel with a Key Manager. It is normally the Key Manager that requests service from a CA, and not the
other way around. For example, the Key Manager might generate an RSA key pair for an endpoint to use for
authentication. The KM would then go to its associated CA and request a certificate for the public key.

The other typical use case for a KM looking to a CA for service is for confirming certificate validity, either
through CRLs or OCSP.

In general, the HSM keeps keys safe within its confines, and exports only metadata about the contained
objects. The metadata allows the KM or an integrated application to refer to the keys and objects within the
HSM, when invoking cryptographic operations by the HSM, but not to touch the actual keys or objects
themselves.

A CA's private key(s) are extremely valuable and often are used only by a CA application operating on a stand-
alone server or one on a very minimally-connected subnet. Backup is normally done to a Safenet Luna Backup
HSM that can then be locked away in a safe.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 20

Chapter 1: SafeNet SDKOverview

We need to encrypt PANs on MS SQL Server 2008 (Extensible Key Management). We have a
problem with the encrypted PAN, as the length is greater than the original PAN (16 digits).
The issue is a common one and it arises because the CBC padding scheme requires an extra padding block (8
bytes), with all bytes having the hex value 8, to be appended if the length of the original plaintext is a multiple of
the cipher’s block length. Another format issue often comes up as well since encrypted data does not generally
represent well as decimal digits.

We suggest one of two options:

1. You can set up a shadow table to hold the encrypted PANs. The shadow table schema can then be set up
for a sufficient number of hex numerals to hold the padded data or just make that field a binary blob. This
takes some coding on your part, and the plaintext PANs would be retrieved into a dynamic view, rather than
back into the “real” table, to protect their confidentiality. You should do this only if there is a hard
requirement to use SafeNet Luna Network HSM, such as certification.

2. Alternatively, you can switch to DataSecure. It has tokenization support and is, in general, designed for DB
security.

"Makecert" fails when using SafeNet Luna Network HSM with MS Authenticode, because the MD5
algorithm is not available when the HSM is in FIPS mode.
Error: CryptHashPublicKeyInfo failed => 0x80090005 (-2146893819) Failed, and FINIDigest_Init
CKR_MECHANISM_INVALID(296ms) {}
The certificate always has an MD5 hash in it. Configure LunaCSP algorithm registration such that MD5 hashing
is performed in software. For example:

register.exe /algorithms

We are developing our application(s) in C#, and we want to integrate with SafeNet Luna Network
HSMs
If you want to integrate your C# application with SafeNet Luna Network HSM 6.x using PKCS#11 calls, rather
than using Microsoft CAPI or CNG, then you might consider using "ncryptoki". At the time this note is being
written, we have not created anything formal, but we have worked with some customers who are successfully
using "ncryptoki" for that purpose.

Keep an eye on the Safenet C3 website, or ask your SafeNet technical representatives if anything new has
been added. Or, you could engage SafeNet Professional Services for formal assistance with your project.

We intend to use PKCS#11 data objects - is this supported in the API for your HSMs?
Yes, it's a basic requirement.
If you have concerns, you might wish to verify if SafeNet Luna Network HSMs' (and our API's) handling of data
objects are conducive to the operation of your intended application(s). SafeNet API generally places no
restrictions on whether data objects can be private or not. We understand that, in the past, some competitors'
modules might have allowed only public data objects, if that was the basis of your question.

However, one concern that might arise is Java.
Java offers no support for data objects, and so we do not support them with the LunaProvider. Unexpected
results can occur with SafeNet JCA if a data object is present in a partition. This might be the case if you
attempt to use an application that uses the CSP, and then the JSP accesses the same partition. CSP inherently
creates a data object for its own purposes.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 21

Chapter 1: SafeNet SDKOverview

Therefore, keep CSP and JSP clients tied to separate partitions. Generally do not allow JSP to connect to a
partition that contains a data object, regardless of the source - Java (and therefore JSP) doesn't know what to
do with it.

If your application scenario really does demand the use of both the Microsoft Cryptographic Provider and Java
against a common partition, then consider upgrading/updating to Microsoft CNG and use our KSP, which does
not inherently create a data object, and so would not cause conflict of that sort.

In our application, both for PKCS#11 and for the JCA/JCE SafeNet Provider, we need to use CKM_
SHAxxx_RSA_PKCS mechanism for Signing. Does Hashing occur at the Client or in the HSM?
CKM_SHAxxx_RSA_PKCS is a PKCS#11 mechanism, not a Java method.

For PKCS#11 the digest operation is done within the HSM if that mechanism is called.
For Java, digests are done in software.

We were using another vendor's HSM - or are evaluating HSM products - to host an online sub- or
issuing CA with MSCA. With the other vendor we must check "Allow administrator interaction
when the private key is accessed by the CA" in the "Configure Cryptography" setup dialog.
SafeNet Luna Network HSMs seem to work regardless of whether that selection is checked or not.
So, for that other vendor's product, you need to enter the additional credentials every time you need to issue a
certificate? That seems a bit restrictive.

"Allow administrator interaction..." actually means "Allow administrator interaction if the underlying KSP
requires it".

The Windows operating system passes a Windows handle that the KSP can use to render any GUI designed by
a vendor (SafeNet or some other vendor).

Somewhere in the process a KSP reports that it can (or cannot) interact with the GUI so the application will (or
will not) request GUI interaction; that is, pass a window handle to the KSP.

So, the <competitor product> KSP expects a window handle - implying hands-on action by an administrator,
each time - whereas SafeNetKsp ignores the handle (if one was provided).

SafeNet's KSPwas designed to register partitions ahead of time. SafeNet Luna Network HSMs can be
Activated, which caches the administrative and enabling credentials, such that only the partition challenge (text
string) is needed, which can be passed by your application without need for GUI interaction. Furthermore,
SafeNet Luna Network HSM can "AutoActivate" partitions, which allows cached ("Activated") partition
credentials to be retained through power interruptions as long as 2 hours in duration.

For SafeNet Luna Network HSMs, as long as the user is registered in the KSP utility, and the partition is
activated, the "Allow administrator interaction..." check box (checked or not checked) does not impose any
additional, ongoing, authentication requirements -- no additional prompts for credentials from the GUI. After
initial setup and Activation, the SafeNet Luna Network HSM knows what to do, and doesn't need to pester you.

For root CAs, on the other hand, you always have the option of not activating the partition, so PED interaction
would always be required to ensure close supervision for each use of the private key.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 22

CHAPTER 2: PKCS#11 Support

This chapter describes the PKCS#11 support provided by the SafeNet SDK. It contains the following topics:

> "PKCS#11Compliance" below

> "Using the PKCS#11 Sample" on page 27

PKCS#11Compliance
This section shows the compliance of SafeNet Software Development Kit HSM products to the PKCS#11
standard, with reference to particular versions of the standard. The text of the standard is not reproduced here.

Supported PKCS#11 Services
The table below identifies which PKCS#11 services this version of SafeNet Software Development Kit supports.
The table following lists other features of PKCS#11 and identifies the compliance of this version of the SafeNet
Software Development Kit to these features.

Category Function Supported SafeNet ver 2.20

General purpose functions C_Initialize Yes

C_Finalize Yes

C_GetInfo Yes

C_GetFunctionList Yes

Table 1: PKCS#11 function support

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 23

Chapter 2: PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Slot and tokenmanagement functions C_GetSlotList Yes

C_GetSlotInfo Yes

C_GetTokenInfo Yes

C_WaitForSlotEvent No

C_GetMechanismList Yes

C_GetMechanismInfo Yes

C_InitToken Yes

C_InitPIN Yes

C_SetPIN Yes

Sessionmanagement functions C_OpenSession Yes

C_CloseSession Yes

C_CloseAllSessions Yes

C_GetSessionInfo Yes

C_GetOperationState Yes

C_SetOperationState Yes

C_Login Yes

C_Logout Yes

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 24

Chapter 2: PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Object management functions C_CreateObject Yes

C_CopyObject Yes

C_DestroyObject Yes

C_GetObjectSize Yes

C_GetAttributeValue Yes

C_SetAttributeValue Yes

C_FindObjectsInit Yes

C_FindObjects Yes

C_FindObjectsFinal Yes

Encryption functions C_EncryptInit Yes

C_Encrypt Yes

C_EncryptUpdate Yes

C_EncryptFinal Yes

Decryption functions C_DecryptInit Yes

C_Decrypt Yes

C_DecryptUpdate Yes

C_DecryptFinal Yes

Message digesting functions C_DigestInit Yes

C_Digest Yes

C_DigestUpdate Yes

C_DigestKey Yes

C_DigestFinal Yes

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 25

Chapter 2: PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Signing andMACing functions C_SignInit Yes

C_Sign Yes

C_SignUpdate Yes

C_SignFinal Yes

C_SignRecoverInit No

C_SignRecover No

Functions for verifying signatures andMACs C_VerifyInit Yes

C_Verify Yes

C_VerifyUpdate Yes

C_VerifyFinal Yes

C_VerifyRecoverInit No

C_VerifyRecover No

Dual-purpose cryptographic functions C_DigestEncryptUpdate No

C_DecryptDigestUpdate No

C_SignEncryptUpdate No

C_DecryptVerifyUpdate No

Key management functions C_GenerateKey Yes

C_GenerateKeyPair Yes

C_WrapKey Yes

C_UnwrapKey* Yes

C_DeriveKey Yes

Random number generation functions C_SeedRandom Yes

C_GenerateRandom Yes

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 26

Chapter 2: PKCS#11 Support

Category Function Supported SafeNet ver 2.20

Parallel function management functions C_GetFunctionStatus No

C_CancelFunction No

Callback function No

*C_UnwrapKey has support for the CKA_Unwrap_Template object. All mechanisms which perform the unwrap
function support an unwrap template. Nested templates are not supported.

Feature Supported?

Exclusive sessions Yes

Parallel sessions No

Table 2: PKCS#11 feature support

Additional Functions
Please note that certain additional functions have been implemented by SafeNet as extensions to the
standard. These include aspects of object cloning, and are described in detail in "SafeNet Luna Extensions to
PKCS#11" on page 29.

Using the PKCS#11 Sample
The SafeNet SDK includes a simple "C" language cross platform source example, p11Sample, that
demonstrates the following:

> How to dynamically load the SafeNet cryptoki library.

> How to obtain the function pointers to the exported PKCS11 standard functions and the SafeNet extension
functions.

The sample demonstrates how to invoke some, but not all of the API functions.

The SfntLibPath Environment Variable
The sample depends on an environment variable created and exported prior to execution. This variable
specifies the location of cryptoki.dll (Windows) or libCryptoki2.so on Linux/UNIX. The variable is called
SfntLibPath. You are free to provide your own means for locating the library.

What p11Sample Does
The p11Sample program performs the following actions:

1. The sample first attempts to load the dynamic library in the function called LoadP11Functions. This calls
LoadLibrary (Windows) or dlopen (Linux/UNIX).

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 27

Chapter 2: PKCS#11 Support

2. The function then attempts to get a function pointer to the PKCS11 APIC_GetFunctionList using
GetProcAddress (Windows) or dlsym (Linux/UNIX).

3. Once the function pointer is obtained, use the API to obtain a pointer called P11Functions that points to the
static CK_FUNCTION_LIST structure in the library. This structure holds pointers to all the other PKCS11
API functions supported by the library.

At this point, if successful, PKCS11 APIs may be invoked like the following:
P11Functions->C_Initialize(...);
P11Functions->C_GetSlotList(...);
P11Functions->C_OpenSession(...);
P11Functions->C_Login(...);
P11Functions->C_GenerateKey(...);
P11Functions->C_Encrypt(...);
:
:
etc

4. The sample next attempts to get a function pointer to the SafeNet extension API CA_GetFunctionList
usingGetProcAddress (Windows) or dlsym (Linux/UNIX).

5. Once the function pointer is obtained, use the API to obtain a pointer called SfntFunctions that points to
the static CK_SFNT_CA_FUNCTION_LIST structure in the library. This structure holds pointers to some
but not all of the other SafeNet extension API functions supported by the library.

6. At this point, if successful, SafeNet extension APIs may be invoked like the following:
SfntFunctions->CA_GetHAState(...);
:
:
etc.

7. A sample makefile is provided for 64-bit AIX
You can easily port to another platform with minor changes.

8. To build: make -f Makefile.aix.64

NOTE Please note that this simple example loads the cryptoki library directly. If your
application requires integration with cklog or ckshim, you will need to load the required library
(see SDKGeneral for naming on your platform) in lieu of cryptoki. cklog and ckshim will then
use the Chrystoki configuration file to locate and load cryptoki. You also have the option of
locating the cryptoki library by parsing the Chrystoki2 section of the Chrystoki config file. If you
do this, then the initial library (cryptoki, cklog, or ckshim) can be changed by simply updating
the configuration file.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 28

CHAPTER 3: Extensions to PKCS#11

This chapter describes the SafeNet extensions to the PKCS#11 standard. It contains the following topics:

> "SafeNet Luna Extensions to PKCS#11" below

> "HSMConfiguration Settings" on page 40

> "SafeNet Luna Network HSM-Specific Commands" on page 40

> "Secure PIN Port Authentication" on page 41

> "High Availability Indirect Login Functions" on page 41

> "MofN Secret Sharing (quorum or multi-person access control)" on page 44

> "Key Export Features" on page 45

> "Derivation of Symmetric Keyswith 3DES_ECB" on page 47

> "PKCS#11 Extension HA StatusCall" on page 48

> "Counter Mode KDFMechanisms" on page 48

> "Derive Template" on page 57

SafeNet Luna Extensions to PKCS#11
The following table provides a list of the SafeNet Luna PKCS#11 C-API extensions.

Firmware Dependencies
Some functions are firmware-dependent, as indicated. Where there is a firmware dependency, the specified
firmware version applies to all minor revisions of the firmware. In the following table, if no firmware
version/series is mentioned, then the extension applies to all. If a firmware version is mentioned, then the
extension applies to that firmware series, but not to others. A function that applies to Firmware 4 (example:
CA_CloneModifyMofN) works with firmware versions 4.xx.xx, but not with firmware 6.xx.xx nor firmware
7.xx.xx.

Other APIs
These commands and functions can also be used as extensions to other Application Programming Interfaces
(for example, OpenSSL).

Cryptoki Version Supported
The current release of SafeNet SafeNet Toolkit provides the Chrystoki library supporting version 2.20 of the
Cryptoki standard.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 29

Chapter 3: Extensions to PKCS#11

Extension Description

CA_ActivateMofN Activates a token that has the secret sharing feature
enabled.

CA_CapabilityUpdate Apply configuration update file as Security Officer only.

CA_CheckOperationState Checks if the specified cryptographic operation (encrypt,
decrypt, sign, verify,digest) is in progress or not in the
given session.

CA_CloneAsSource Refer to theSafeNet Luna Cloning Functions Technical
Note, available from Technical Support.

CA_CloneAsTarget Refer to theSafeNet Luna Cloning Functions Technical
Note, available from Technical Support.

CA_CloneAsTargetInit Refer to theSafeNet Luna Cloning Functions Technical
Note, available from Technical Support.

CA_CloneModifyMofN Firmware 4. Cloning of M of N.

CA_CloneMofN Firmware 4 cloning of M of N. Copy a cloneable secret-
splitting vector from one token to another.

CA_CloneMofN_Common Firmware 4 cloning of M of N.

CA_CloneObject Refer to theSafeNet Luna Cloning Functions Technical
Note, available from Technical Support.

CA_ClonePrivateKey Permits the secure transfer a private key (RSA) between
a source token and a target token.

CA_CloseApplicationID Deactivate an application identifier.

CA_CloseApplicationIDForContainer Deactivate an application identifier for a container.

CA_CloseSecureToken Firmware 6. Close context for an SFF token.

CA_ConfigureRemotePED Configure the given slot to use the provided remote PED
information (appliance slot only).

CA_CreateContainer Create a partition for non-PPSO users.

CA_CreateContainerLoginChallenge Create a challenge for a role on a partition.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 30

Chapter 3: Extensions to PKCS#11

Extension Description

CA_CreateContainerWithPolicy Firmware 6. Create a partition with per-partition template
data.

CA_CreateLoginChallenge Create a login challenge for the specified user.

CA_Deactivate Deactivate a partition.

CA_DeactivateMofN Firmware 4. Deactivate M of N.

CA_DeleteContainer Delete a partition.

CA_DeleteContainerWithHandle Delete a partition.

CA_DeleteRemotePEDVector Delete the Remote PED vector.

CA_DeriveKeyAndWrap This is an optimization of C_DeriveKey with C_Wrap,
merging the two functions into one (the in and out
constraints are the same as for the individual functions).
A further optimization is applied whenmechanism CKM_
ECDH1_DERIVE is used with CA_DeriveKeyAndWrap.

CA_DestroyMultipleObjects Deletemultiple objects.

CA_DismantleRemotePED Inverse of CA_ConfigureRemotePED(). Delete remote
PED configuration information.

CA_DuplicateMofN Create duplicates (copies) of all MofN secret splits.

CA_EncodeECChar2Params Encode EC curve parameters for user defined curves.

CA_EncodeECParamsFromFile Encode EC curve parameters for user defined curves.

CA_EncodeECPrimeParams Encode EC curve parameters for user defined curves.

CA_Extract Extract a SIM3 blob.

CA_FactoryReset Factory Reset the HSM.

CA_FindAdminSlotForSlot Get the Admin slot for the current slot.

CA_FirmwareRollback Rollback firmware.

CA_FirmwareUpdate Firmware 4. Firmware update for Firmware 4 (only used
in Luna SA 4.x).

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 31

Chapter 3: Extensions to PKCS#11

Extension Description

CA_GenerateCloneableMofN Create a cloneable secret-splitting vector on a token.

CA_GenerateCloningKEV Refer to theSafeNet Luna Cloning Functions Technical
Note, available from Technical Support.

CA_GenerateMofN Generate the secret information on a token.

CA_GenerateMofN_Common Refer to theM of N document.

CA_Get Get HSM parameters such as serial numbers, and
certificates.

CA_GetConfigurationElementDescription Get capability / policy description and properties.

CA_GetContainerCapabilitySet Get all partition capability values.

CA_GetContainerCapabilitySetting Get a single partition capability value.

CA_GetContainerList Get the list of all partitions on a slot.

CA_GetContainerName Get the name of a specific partition.

CA_GetContainerPolicySet Get all partition policy values.

CA_GetContainerPolicySetting Get a single partition policy value.

CA_GetContainerStatus Get partition status, which returns authentication status
flags.

CA_GetContainerStorageInformation Get partition storage information such as size, usage,
and number of objects.

CA_GetDefaultHSMPolicyValue Get the default value of a single HSM policy.

CA_GetDefaultPartitionPolicyValue Get the default value of a single partition policy.

CA_GetFirmwareVersion Get the vendor-specific firmware version of the SafeNet
Luna HSM.

CA_GetHAState Get HA status from the application perspective.

CA_GetHSMCapabilitySet Get all HSM capability values.

CA_GetHSMCapabilitySetting Get a single HSM capability value.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 32

Chapter 3: Extensions to PKCS#11

Extension Description

CA_GetHSMPolicySet Get all HSM policy values.

CA_GetHSMPolicySetting Get a single HSM policy value.

CA_GetHSMStats Get HSM usage stats such as operational counters and
how busy the HSM is.

CA_GetHSMStorageInformation Get HSM storage information such as storage and
usage.

CA_GetMofNStatus Retrieve theMofN structure of the specified token.

CA_GetNumberOfAllowedContainers Get the number of allowed partitions depending on the
partition license count.

CA_GetObjectHandle Get the object handle for a givenOUID.

CA_GetObjectUID Get the OUID for a given object handle.

CA_GetPartitionPolicyTemplate Firmware 6. Gets default partition policy template data
from HSM.

CA_GetPedId Get the PED ID.

CA_GetRemotePEDVectorStatus Get the status of the RPV, created or not.

CA_GetRollbackFirmwareVersion Get the available rollback version.

CA_GetSecureElementMeta Get META data for objects on an SFF backup token.

CA_GetServerInstanceBySlotID Get the instance # in the chrystoki.conf (crystoki.ini) file
for the appliance/server the specified slot maps to.

CA_GetSessionInfo Gets the session info that includes vendor specific
information such as authentication state and container
handle.

CA_GetSlotIdForContainer Return a slot for a given container handle.

CA_GetSlotIdForPhysicalSlot Return a slot for a given physical slot.

CA_GetSlotListFromServerInstance Get the list of slots for the specified appliance/server
instance #, as defined in the chrystoki.conf (crystoki.ini)
file.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 33

Chapter 3: Extensions to PKCS#11

Extension Description

CA_GetTime Get the HSM time.

CA_GetTokenCapabilities Get the capabilities for the specified partition.

CA_GetTokenCertificateInfo Get the cloning certificate.

CA_GetTokenCertificates Get all HSM certifcates.

CA_GetTokenInsertionCount Get the insertion or reset count of HSM in the given slot.

CA_GetTokenObjectHandle Firmware 6.22.0 or higher. Same as CA_
GetObjectHandle for partitions with a partition security
officer.

CA_GetTokenObjectUID Firmware 6.22.0 or higher. Same as CA_
GetObjectOUID for partitions with a partition security
officer.

CA_GetTokenPolicies Get partition policies.

CA_GetTokenStatus Get partition status.

CA_GetTokenStorageInformation Get partition storage information.

CA_GetTunnelSlotNumber Get the tunnel slot number for a given slot number.

CA_HAActivateMofN See "High Availability Indirect Login Functions" on
page 41.

CA_HAAnswerLoginChallenge See "High Availability Indirect Login Functions" on
page 41.

CA_HAAnswerMofNChallenge See "High Availability Indirect Login Functions" on
page 41.

CA_HAGetLoginChallenge See "High Availability Indirect Login Functions" on
page 41.

CA_HAGetMasterPublic See "High Availability Indirect Login Functions" on
page 41.

CA_HAInit See "High Availability Indirect Login Functions" on
page 41.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 34

Chapter 3: Extensions to PKCS#11

Extension Description

CA_HALogin See "High Availability Indirect Login Functions" on
page 41.

CA_InitAudit Initialize the Auditor role.

CA_InitializeRemotePEDVector Create the Remote PED Vector.

CA_InitRolePIN Initialize a role on the current slot.

CA_InitSlotRolePIN Initialize a role on a different slot.

CA_InitToken Same as CA_Init_token with PPT support.

CA_Insert Insert a SIM3 blob.

CA_IsMofNEnabled Firmware 4. Queries M of N status.

CA_IsMofNRequired Firmware 4. Queries M of N status.

CA_ListSecureTokenInit Retrieve information from an SFF backup token.

CA_ListSecureTokenUpdate Continue retrieving information from a backup SFF
token.

CA_LogExportSecret Export (backup) the audit log HMAC key.

CA_LogExternal Log external message - pushes an application-provided
message to the HSM and logs it via the audit log.

CA_LogGetConfig Get the audit log configuration.

CA_LogGetStatus Get the audit log status (audit role, logs needing export,
HSM to PedClient communication status).

CA_LogImportSecret Restore the audit log HMAC key.

CA_LogSetConfig Modify the audit log configuration.

CA_LogVerify Verify the audit log record(s).

CA_LogVerifyFile Verify the audit log record file.

CA_ManualKCV Set the key cloning vector (KCV) (sets the domain).

CA_ModifyMofN Modify the secret-splitting vector on a token.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 35

Chapter 3: Extensions to PKCS#11

Extension Description

CA_ModifyUsageCount Modify key usage count (Crypto Officer).

CA_MTKGetState Firmware 6. Get themaster tamper key (MTK) state
(tampered or not).

CA_MTKResplit Generate new MTK split, new purple key value.

CA_MTKRestore ReturnMTK, provide purple key to recover from tamper.

CA_MTKSetStorage Create purple key, enables STM/SRK.

CA_MTKZeroize Erase theMTK, user invoked tamper. Puts HSM in to
transport mode.

CA_OpenApplicationID Activate an application identifier, independent of any
open sessions.

CA_OpenApplicationIDForContainer Same as CA_OpenApplicationID, but partition specific.

CA_OpenSecureToken Firmware 6. Open context for an SFF token.

CA_OpenSession Same as C_OpenSession, but lets you specify partition.

CA_OpenSessionWithAppID Same as CA_OpenSession, but lets you specify an
application ID (AppID)

CA_PerformSelfTest Invoke a self test on HSM (RNG statistics,
Cryptographic Algorithms).

CA_QueryLicense Get License/CUF information.

CA_ResetDevice Reset the HSM .

CA_ResetPIN SO reset of a CO role PIN (if "SO can reset PIN" policy
is on).

CA_Restart Clean up all sessions for a given slot.

CA_RestartForContainer Clean up all sessions for a given partition.

CA_RetrieveLicenseList Get a list of all Licenses/CUFs.

CA_RoleStateGet Get the state of a role (initialized, activated, failed logins,
challenge created, etc).

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 36

Chapter 3: Extensions to PKCS#11

Extension Description

CA_SetApplicationID Set the application's identifier.

CA_SetCloningDomain Set the domain string used during token initialization.

CA_SetContainerPolicies Set multiple partition policies.

CA_SetContainerPolicy Set single partition policy.

CA_SetContainerSize Set container storage size.

CA_SetDestructiveHSMPolicies Set multiple destructive HSM policies.

CA_SetDestructiveHSMPolicy Set single destructive HSM policy.

CA_SetHSMPolicies Set multiple HSM policies.

CA_SetHSMPolicy Set single HSM policy.

CA_SetKCV Set KCV (domain).

CA_SetLKCV Set a legacy KCV (legacy domain).

CA_SetMofN Set the security policy for the token to use the secret
sharing feature.

CA_SetPedId Set the PED ID for a specific slot.

CA_SetRDK Set the RDK (role specific KCV) for the current role.

CA_SetTokenPolicies Set partition policies for given slot (PPSO only)

CA_SetUserContainerName Set the name the library should use for the user partition
on non-PPSO partitions.

CA_SIMExtract SIM2, SKS, firmware 4.x, firmware 6.x. Extract SIM2
blob.

CA_SIMInsert SIM2, SKS, firmware 4.x, firmware 6.x. Insert SIM2
blob.

CA_SIMMultiSign SIM2, SKS, firmware 4.x, firmware 6.x. Signmultiple
data blobs with multiple keys provided as SIM2 blobs.

CA_SpRawRead PED key migration - read PED key value from DataKey
PED Key.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 37

Chapter 3: Extensions to PKCS#11

Extension Description

CA_SpRawWrite PED key migration - store PED key value to iKey PED
Key.

CA_STCClearCipherAlgorithm Remove the specified Cipher Algorithm from use with
STC for the specified slot.

CA_STCClearDigestAlgorithm Remove the specified Digest Algorithm from use with
STC for the specified slot.

CA_STCDeregister Remove STC registration of a client from the specified
slot.

CA_STCGetAdminPubKey Get the public key for the Admin slot's STC identity RSA
keypair.

CA_STCGetChannelID Get the Secure Trusted Channel ID for the current slot.

CA_STCGetCipherAlgorithm Get all the valid cipher suites allowed for the specified
slot.

CA_STCGetCipherID Get the ID for the cipher currently in use on active STC
to this slot.

CA_STCGetCipherIDs Get all cipher IDs valid for use with STC to the specified
slot.

CA_STCGetCipherNameByID Get the readable name string for the specified Cipher ID.

CA_STCGetClientInfo Get the STC registration details (name, public key,
active access) about the specified client on the specified
slot.

CA_STCGetClientsList Get the list of all STC clients registered to the specified
slot.

CA_STCGetCurrentKeyLife Get the remaining lifetime (in operations) for the active
negotiated STC session key.

CA_STCGetDigestAlgorithm Get all the valid digest algorithms allowed for the
specified slot.

CA_STCGetDigestID Get the ID for the digest currently in use on active STC
to this slot.

CA_STCGetDigestIDs Get all digest IDs valid for use with STC to the specified
slot.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 38

Chapter 3: Extensions to PKCS#11

Extension Description

CA_STCGetDigestNameByID Get the readable name string for the specified Digest ID.

CA_STCGetKeyActivationTimeOut Get the amount of time allowed between the initiation
and completion of STC session negotiation.

CA_STCGetKeyLifeTime Get the configured session key lifetime (in operations)
for the specified slot.

CA_STCGetPartPubKey Get the public key for the specified slot STC identity
RSA keypair.

CA_STCGetPubKey Get the specified slot's public key.

CA_STCGetSequenceWindowSize Get the replay window size for the specified slot.

CA_STCGetState Get the STC state of the specified slot.

CA_STCIsEnabled Determine if STC is configured for the specified slot.

CA_STCRegister Register a client for STC to the specified slot.

CA_STCSetCipherAlgorithm Set a cipher algorithm as valid for use with STC on the
specified slot.

CA_STCSetDigestAlgorithm Set a digest algorithm as valid for use with STC on the
specified slot.

CA_STCSetKeyActivationTimeOut Set the amount of time allowed between the initiation
and completion of STC session negotiations for the
specified slot.

CA_STCSetKeyLifeTime Set how long a STC key can live before STC rekeying
occurs.

CA_STCSetSequenceWindowSize Set the replay window size for the specified slot.

CA_STMGetState Firmware 7. Get STM state (enabled or disabled).

CA_STMToggle Enter, or recover from, Secure Transport Mode.

CA_TamperClear Firmware 7. Used by the SO to clear tamper status.

CA_TimeSync Synchronize the HSM timewith the host time.

CA_TokenDelete SO can delete a partition (PPSO only).

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 39

Chapter 3: Extensions to PKCS#11

Extension Description

CA_TokenZeroize Zeroize a PPSO partition.

CA_ValidateContainerPolicySet Firmware 7. Validate partition policy settings prior to
calling SetPolicies.

CA_ValidateHSMPolicySet Firmware 7. Validate HSM policy settings prior to calling
SetPolicies.

CA_WaitForSlotEvent For PCMCIA HSMs, extends C_WaitForSlotEvent and
provides some history of events.

CA_Zeroize Zeroize the HSM.

HSMConfiguration Settings
SafeNet Luna Network HSMs implement configuration settings that can be used to modify the behavior of the
HSM, or can be read to determine how the HSM will behave. There are multiple settings that may be
manipulated. Other than the "allow non-FIPS algorithms", most customers have no need to either query or
change HSM settings. If you believe that your application needs more control over the HSM, please contact
SafeNet for guidance.

SafeNet Luna Network HSM-Specific Commands
SafeNet Luna Network HSM, both the HSM Server and the client, use PKCS#11 and the SafeNet Extensions,
with some exceptions that differ from other SafeNet products. This SDK document is meant to support all
SafeNet products that use PKCS#11 and the other supported interfaces, in addition to SafeNet Luna Network
HSM.

Commands Not Available Through Libraries
Several commands, both standard PKCS#11 commands and our Extensions are not enabled in the Client,
because their functions are addressed on SafeNet Luna Network HSM via the LunaSH interface. These are:

> C_InitToken

> C_SetPin

> CA_ResetPin

> CA_SetCloningDomain

> All of the CCM commands

> CA_ClonePrivateKey

> C_GetOperationState

> C_SetOperationState

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 40

Chapter 3: Extensions to PKCS#11

Configuration Settings
Other SafeNet tokens implement configuration settings that can be used to modify the behavior of the token, or
can be read to determine how the token will behave.

In SafeNet Luna Network HSM, this configuration and modification of HSM and behavior is controlled in
LunaSH via HSM Policies, using the following commands:

> "hsm showpolicies" on page 1

> "hsm changepolicy" on page 1

Secure PIN Port Authentication
Generally, an application collects an authentication code or PIN from a user and/or other source controlled by
the host computer. With Gemalto's FIPS 140-2 level 3-validated products (such as SafeNet Luna Network
HSM), the PINmust come from a device connected to the secure port of the physical interface (or connected
via a secure Remote PED protocol connection). The Luna PED (PIN Entry Device) is used for secure entry of
PINs.

A bit setting in the device's capabilities settings determines whether the HSM requires that PINs be entered
through the secure port. If the appropriate configuration bit is set, PINs must be entered through the secure
port.

If the device's configuration bit is off, the application must provide the PIN through the existing mechanism.
Through setting the PIN parameters, the application tells the token where to look for PINs. A similar
programming approach applies to define the key cloning domain identifier.

Applications wanting PINs to be collected via the secure port must pass a NULL pointer for the pPin parameter
and a value of zero for the ulPinLen parameter in function calls with PIN parameters. This restriction applies
everywhere PINs are used. The following functions are affected:

> C_InitToken

> C_InitIndirectToken

> C_InitPIN

> C_SetPIN

> CA_InitIndirectPIN

> C_Login

> CA_IndirectLogin

When domains are generated/collected through the secure port during a C_InitToken call, the application must
pass a NULL pointer for the pbDomainString parameter and a value of zero for the ulDomainStringLen
parameter in the CA_SetCloningDomain function.

High Availability Indirect Login Functions

NOTE In order to implement High Availability Recovery, the primary and secondary tokens
must exist on separate systems.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 41

Chapter 3: Extensions to PKCS#11

The following enhancements securely extend the indirect login capability to SafeNet CA3 tokens. SafeNet CA3
tokens to store sensitive information (encrypted) in flash memory, and must therefore be protected against
attack by a man-in-the-middle who physically attacks the target token to expose the contents of flash memory,
and employs that information against intercepted (or spuriously-generated) message traffic.

The SafeNet CA3 to SafeNet CA3 indirect login protocol also supports old-style MofN authentication between
tokens that share an MofN secret.

Initialization functions
Initialization of tokens in a high-availability environment involves three steps:

1. The generation of an RSA login key pair (the public key of the pair may be discarded),
2. Cloning of the private key member to the User (and optionally to the SO) spaces of all tokens within that

environment and,

3. Calling the CA_HAInit function on all tokens within that environment, in the context of the session owned
by the User or SO.

The first two steps are performed using ordinary key generate and cloning Cryptoki function calls. The CA_
HAInit function is implemented as follows:

CA_HAInit()
CK_RV CK_ENTRY CA_HAInit(
CK_SESSION_HANDLE hSession, // Logged-in session of user
// who owns the Login key pair
CK_OBJECT_HANDLE hLoginPrivateKey // Handle to Login private key
);

Recovery Functions
The HA recovery mechanism requires the following commands and interface functions:

CA_HAGetMasterPublic()
Called on the primary token, CA_HAGetMasterPublic() retrieves the primary token's TWC (Token Wrapping
Certificate) and returns it as a blob (octet string and length). The format of this function is as follows:
CK_RV CK_ENTRY CA_HAGetMasterPublic(
CK_SLOT_ID slotId, // Slot number of the primary
// token
CK_BYTE_PTR pCertificate, // pointer to buffer to hold
//TWC certificate
CK_ULONG_PTR pulCertificateLen // pointer to value to hold
//TWC certificate length
);

CA_HAGetLoginChallenge()
Called on the secondary token,CA_HAGetLoginChallenge() accepts the TWC blob and returns the
secondary token's login challenge blob. The format of this command is as follows:
CK_RV CK_ENTRY CA_HAGetLoginChallenge(
CK_SESSION_HANDLE hSession, // Public session
CK_USER_TYPE userType, // User type - SO or USER
CK_BYTE_PTR pCertificate, // TWC certificate retrieved

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 42

Chapter 3: Extensions to PKCS#11

// from primary
CK_ULONG ulCertificateLen, // TWC certificate length
CK_BYTE_PTR pChallengeBlob, // pointer to buffer to hold
// challenge blob
CK_ULONG_PTR pulChallengeBlobLen // pointer to value to hold
// challenge blob length
);

CA_HAAnswerLoginChallenge()
Called on the primary token,CA_HAAnswerLoginChallenge() accepts the login challenge blob and returns
the encrypted SO or User PIN, as appropriate.
CK_RV CK_ENTRY CA_HAAnswerLoginChallenge(
CK_SESSION_HANDLE hSession, // Session of the Login Private
// key owner
CK_OBJECT_HANDLE hLoginPrivateKey, // object handle to login key
CK_BYTE_PTR pChallengeBlob, // pointer to buffer containing
// challenge blob
CK_ULONG ulChallengeBlobLen, // length of challenge blob
CK_BYTE_PTR pEncryptedPin, // pointer to buffer holding
// encrypted PIN
CK_ULONG_PTR pulEncryptedPinLen // pointer to value holding
// encrypted PIN length
);

CA_HALogin()
Called on the secondary token,CA_HALogin() accepts the encrypted PIN and logs the secondary token in. If
the second-ary token requires MofN authentication, an MofN challenge blob is returned. If no MofN
authentication is required, a zero-length blob is returned. The format of this function is as follows:
CK_RV CK_ENTRY CA_HALogin(
CK_SESSION_HANDLE hSession, // Same public session opened
// in CA_HAGetLoginChallenge,
//above
CK_BYTE_PTR pEncryptedPin, // pointer to buffer holding
// encrypted PIN
CK_ULONG ulEncryptedPinLen, // length of encrypted PIN
CK_BYTE_PTR pMofNBlob, // pointer to buffer to hold
// MofN blob
CK_ULONG_PTR pulMofNBlobLen // pointer to value to hold the
// length of MofN blob
);
If the call is successful, then the session now becomes a pri-vate session owned by the User or SO (as
appropriate).

CA_AnswerMofNChallenge()
Called on the primary token,CA_AnswerMofNChallenge() accepts the MofN challenge blob and returns the
primary token's masked MofN secret. The format of this function is as follows:
CK_RV CK_ENTRY CA_HAAnswerMofNChallenge(
CK_SESSION_HANDLE hSession, // Private session
CK_BYTE_PTR pMofNBlob, // passed in MofN blob
CK_ULONG ulMofNBlobLen, // length of MofN blob
CK_BYTE_PTR pMofNSecretBlob, // pointer to buffer to hold
// MofN secret blob

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 43

Chapter 3: Extensions to PKCS#11

CK_ULONG_PTR pulMofNSecretBlobLen//pointer to value that holds
// the MofN secret blob len
);

CA_HAActivateMofN()
Called on the secondary token,CA_HAActivateMofN() accepts the masked MofN secret and performs MofN
authentication. The resulting MofN secret is checked against the CRC stored in the MofN PARAM structure.
CK_RV CK_ENTRY CA_HAActivateMofN(
CK_SESSION_HANDLE hSession, // The now-private session from
// successful CA_HALogin call
CK_BYTE_PTR pMofNSecretBlob, // pointer to MofN secret
// blob that is passed in
CK_ULONG ulMofNSecretBlobLen // length of MofN secret blob
);
It is expected that the recovery functions will be executed in the proper sequence and as part of an atomic
operation. Nonetheless, the recovery operation may be restarted at any time due to an error. Restarting the
recovery operation resets the state condition of the secondary token, and any data that has been stored or
generated on the token is discarded.

Login Key Attributes
The login keys must possess the following attributes to function properly in a HA recovery scenario:
// Object
CKA_CLASS = CKO_PRIVATE_KEY,
// StorageClass
CKA_TOKEN = True,
CKA_PRIVATE = True,
CKA_MODIFIABLE = False,
// Key
CKA_KEY_TYPE = CKK_RSA,
CKA_DERIVE = False,
CKA_LOCAL = True,
// Private
CKA_SENSITIVE = True,
CKA_DECRYPT = False,
CKA_SIGN = False,
CKA_SIGN_RECOVER = False,
CKA_UNWRAP = False,
CKA_EXTRACTABLE = False

Control of HA Functionality
Refer to for the mechanisms by which the SO can control availability of the HA functionality.

MofN Secret Sharing (quorum or multi-person access control)
In previous SafeNet Luna Network HSM releases, this page described library and firmware aspects of MofN
secret sharing.

Current implementation (since HSM firmware 5) no longer implements MofN via the HSM.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 44

Chapter 3: Extensions to PKCS#11

Instead, MofN is entirely mediated via Luna PED 2.4 and later. The HSM is unaware of secret sharing. Multi-
person access control for any of the authentication secrets (SO, User, Cloning domains, Remote PED Vector)
is a PED function, and the HSM sees only the fully reconstituted MofN secrets as they are presented to it by the
PED.

This implementation is both cleaner and more flexible than the legacy implementation. If you have used, or are
still using legacy SafeNet Luna Network HSMs, be aware that the legacy implementation of MofN split-secret,
multi-person access control is not compatible with the modern implementation. For migration instructions,
contact Gemalto Technical Support.

Key Export Features
The SafeNet Key Export HSM provides the feature(s) detailed in this section.

RSAKey ComponentWrapping
The RSAKey Component Wrapping is a feature that allows an application to wrap any subset of attributes from
an RSA private key with 3-DES. Access to the feature is through the PKCS #11 function C_WrapKey with the
CKM_DES3_ECBmechanism. The wrapping key must be a CKK_DES2 or CKK_DES3 key with its CKA_WRAP
attribute set to TRUE. The key to wrap must be an RSA private key with CKA_EXTRACTABLE set to TRUE and
the FPVmust have FPV_WRAPPING_TOKEN turned on.

The details of the wrapping format are specified with a format descriptor. The format descriptor is provided as
the mechanism parameter to the CKM_DES3_ECBmechanism. This descriptor consists of a 32-bit format
version, followed by a set of field element descriptors. Each field element descriptor consists of a 32-bit Field
Type Identifier and optionally some additional data. The SafeNet firmware parses the set of field element
descriptors and builds the custom layout of the RSA private key in an internal buffer. Once all field element
descriptors are processed, the buffer is wrapped with 3-DES and passed out to the calling application. It is the
responsibility of the calling application to ensure that the buffer is a multiple of 8 bytes.

The format descriptor version (the first 32-bit value in the format data) must always be set to zero.

The set of supported field element descriptor constants is as follows:

> #define KM_APPEND_STRING 0x00000000

> #define KM_APPEND_ATTRIBUTE 0x00000001

> #define KM_APPEND_REVERSED_ATTRIBUTE 0x00000002

> #define KM_APPEND_RFC1423_PADDING 0x00000010

> #define KM_APPEND_ZERO_PADDING 0x00000011

> #define KM_APPEND_ZERO_WORD_PADDING 0x00000012

> #define KM_APPEND_INV_XOR_CHECKSUM 0x00000020

> #define KM_DEFINE_IV_FOR_CBC 0x00000030

The meanings of the field element descriptors is as follows:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 45

Chapter 3: Extensions to PKCS#11

Field element
descriptor

Description

KM_APPEND_
STRING

Appends an arbitrary string of bytes to the custom layout buffer.
The field type identifier is followed by a 32-bit length field defining the number of bytes to append.
The length field is followed by the bytes to append.
There is no restriction of the length of data that may be appended, as long as the total buffer length
does not exceed 3072 bytes.

KM_APPEND_
ATTRIBUTE

Appends an RSA private key component into the buffer in big endian representation.
The field type identifier is followed by a 32-bit CK_ATTRIBUTE_TYPE value set to one of the
following: CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_
1, CKA_EXPONENT_2, or CKA_COEFFICIENT..
The key component is padded with leading zeros such that the length is equal to themodulus
length in the case of the private exponent, or equal to half of themodulus length in the case of the
other 5 components.

KM_APPEND_
REVERSED_
ATTRIBUTE

Appends an RSA private key component into the buffer in little endian representation.
The field type identifier is followed by a 32-bit CK_ATTRIBUTE_TYPE value set to one of the
following: CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_
1, CKA_EXPONENT_2, or CKA_COEFFICIENT.
The key component is padded with trailing zeros such that the length is equal to themodulus
length in the case of the private exponent, or equal to half of themodulus length in the case of the
other 5 components.

KM_APPEND_
RFC1423_
PADDING

Applies RFC 1423 padding to the buffer (appends 1 to 8 bytes with values equal to the number of
bytes, such that the total buffer length becomes amultiple of 8).
This would typically be the last formatting element in a set, but this is not enforced.

KM_APPEND_
ZERO_
PADDING

Applies Zero padding to the buffer (appends 0 to 7 bytes with values equal to Zero, such that the
total buffer length becomes amultiple of 8).
This would typically be the last formatting element in a set, but this is not enforced.

KM_APPEND_
ZERO_
WORD_
PADDING

Zero pads the buffer to the next 32-bit word boundary.

KM_APPEND_
INV_XOR_
CHECKSUM

Calculates and adds a checksum byte to the buffer.
The checksum is calculated as the complement of the bytewise XOR of the buffer being built.

KM_DEFINE_
IV_FOR_CBC

Allows definition of an IV so that 3DES_CBC wrapping can be performed even though the
functionality is invoked with the CKM_3DES_ECB mechanism.
The field type identifier is followed by a 32-bit length field, whichmust be set to 8.
The length is followed by exactly 8 bytes of data which are used as the IV for the wrapping
operation.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 46

Chapter 3: Extensions to PKCS#11

Examples
To wrap just the private exponent of an RSA key in big endian representation, the parameters would appear as
follows:

NOTE Ensure that the packing alignment for your structures uses one (1) byte boundaries.

struct
{
UInt32 version = 0;
UInt32 elementType = KM_APPEND_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute = CKA_PRIVATE_EXPONENT;
}
To wrap the set of RSA key components Prime1, Prime2, Coefficient, Exponent1, Exponent2 in little endian
representation with a leading byte of 0x05 and ending with a CRC byte and then zero padding, the parameters
would appear in a packed structure as follows:
struct
{
UInt32 version = 0;
UInt32 elementType1 = KM_APPEND_STRING;
UInt32 length = 1;
UInt8 byteValue = 5;
UInt32 elementType2 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute1 = CKA_PRIME_1;
UInt32 elementType3 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute2 = CKA_PRIME_2;
UInt32 elementType4 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute3 = CKA_COEFFICIENT;
UInt32 elementType5 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute4 = CKA_EXPONENT_1;
UInt32 elementType6 = KM_APPEND_REVERSED_ATTRIBUTE;
CK_ATTRIBUTE_TYPE attribute5 = CKA_EXPONENT_2;
UInt32 elementType7 = KM_APPEND_INV_XOR_CHECKSUM;
UInt32 elementType8 = KM_APPEND_ZERO_PADDING;
}

Derivation of Symmetric Keys with 3DES_ECB
SafeNet supports derivation of symmetric keys by the encryption of "diversification data" with a base key.
Access to the derivation functionality is through the PKCS #11 C_DeriveKey function with the CKM_DES3_ECB
and CKM_DES_ECBmechanism. Diversification data is provided as the mechanism parameter. The derived
key can be any type of symmetric key. The encrypted data forms the CKA_VALUE attribute of the derived key.
A template provided as a parameter to the C_DeriveKey function defines all other attributes.

Rules for the derivation are as follows:

> The Base Key must be of type CKK_DES2 or CKK_DES3 when using CKM_DES3_ECB. It must be of type
CKK_DESwhen using CKM_DES_ECB.

> The base key must have its CKA_DERIVE attribute set to TRUE.

> The template for the derived key must identify the key type (CKA_KEY_TYPE) and length (CKA_VALUE_
LEN). The type and length must be compatible. The length can be omitted if the key type supports only one
length. (E.g., If key type is CKK_DES2, the length must either be explicitly defined as 16, or be omitted to

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 47

Chapter 3: Extensions to PKCS#11

allow the value to default to 16). Other attributes in the template must be consistent with the security policy
settings of the SafeNet Luna Network HSM.

> The derivation mechanism must be set to CKM_DES3_ECB or CKM_DES_ECB, the mechanism parameter
pointer must point to the diversification data, and the mechanism parameter length must be set to the
diversification data length.

> The diversification data must be the same length as the key to be derived, with one exception. If the key to
be derived is16 bytes, the base key is CKK_DES2 and the diversification data is only 8 bytes, then the data
is encrypted twice - once with the base key and once with the base key with its halves reversed. Joining the
two encrypted pieces forms the derived key.

> If the derived key is of type CKK_DES, CKK_DES2 or CKK_DES3, odd key parity is applied to the new key
value immediately following the encryption of the diversification data. The encrypted data is taken as-is for
the formation of all other types of symmetric keys.

PKCS#11 Extension HA Status Call
ASafeNet extension to the PKCS#11 standard allows query of the HA group state.

Function Definition
CK_RV CK_ENTRY CA_GetHAState(CK_SLOT_ID slotId, CK_HA_STATE_PTR pState);
The structure definitions for a CK_HA_STATE_PTR and CK_HA_MEMBER are:
typedef struct CK_HA_MEMBER{
CK_ULONG memberSerial;
CK_RV memberStatus;
}CK_HA_MEMBER;

typedef struct CK_HA_STATUS{
CK_ULONG groupSerial;
CK_HA_MEMBER memberList[CK_HA_MAX_MEMBERS];
CK_USHORT listSize;
}CK_HA_STATUS;
See the JavaDocs included with the software for a description of the Java methods derived from this cryptoki
function.

Counter Mode KDF Mechanisms
The SafeNet Luna Network HSMs support the following two vendor defined mechanisms. They can be used to
perform Counter Mode KDF (key derivation functions) using various CMAC algorithms (DES3, AES, ARIA,
SEED) as the PRF (pseudo-random function). See NIST SP 800-108.
#define CKM_NIST_PRF_KDF (CKM_VENDOR_DEFINED + 0xA02)
#define CKM_PRF_KDF (CKM_VENDOR_DEFINED + 0xA03)

/* Parameter and values used with CKM_PRF_KDF and * CKM_NIST_PRF_KDF. */

typedef CK_ULONG CK_KDF_PRF_TYPE;
typedef CK_ULONG CK_KDF_PRF_ENCODING_SCHEME;

/** PRF KDF types */

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 48

Chapter 3: Extensions to PKCS#11

#define CK_NIST_PRF_KDF_DES3_CMAC 0x00000001
#define CK_NIST_PRF_KDF_AES_CMAC 0x00000002
#define CK_PRF_KDF_ARIA_CMAC 0x00000003
#define CK_PRF_KDF_SEED_CMAC 0x00000004

#define LUNA_PRF_KDF_ENCODING_SCHEME_1 0x00000000
#define LUNA_PRF_KDF_ENCODING_SCHEME_2 0x00000001

typedef struct CK_KDF_PRF_PARAMS {
CK_KDF_PRF_TYPE prfType;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pContext;
CK_ULONG ulContextLen;
CK_ULONG ulCounter;
CK_KDF_PRF_ENCODING_SCHEME ulEncodingScheme;

} CK_PRF_KDF_PARAMS;

typedef CK_PRF_KDF_PARAMS CK_PTR CK_KDF_PRF_PARAMS_PTR;

BIP32Mechanism Support and Implementation
This section describes the BIP32 functions, key attributes, error codes, and mechanisms supported for BIP32
with the HSM.

Curve Support
Only curve secp256k1 is supported. The BIP32 derivation mechanisms fail with CKR_TEMPLATE_
INCONSISTENT if you attempt to specify a curve with CKA_ECDSA_PARAMS.

Key Type and Form
The key type CKK_BIP32 is used to distinguish keys that can be used for BIP32 from all the existing ECDSA
keys. Existing ECDSA keys cannot be used with any of the BIP32 mechanisms because they lack a chain code.
The serialization format when importing, exporting, wrapping and unwrapping keys is also different from
ECDSA keys. All mechanisms supported by ECDSA keys are supported for BIP32 keys.

Extended Keys and Hardened Keys
BIP32 includes hardened and non-hardened (normal) child keys. Each has a 32-bit index. Child keys are
considered hardened if the most significant bit of their index is set. This bit is defined as CKF_BIP32_
HARDENED. This allows 2^31 hardened keys and 2^31 non-hardened keys per parent.

Hardened private keys create a firewall through which multi-level key derivation compromises cannot happen.
For normal (non-hardened) keys one can derive child public keys of a given parent key without knowing any
private key. So if an attacker gets a normal parent chain code and parent public key, he can brute-force all
chain codes deriving from it. If the attacker also obtains a child, grandchild, or further-descended private key,
he can use the chain code to generate all of the extended private keys descending from that private key. The
formula for creating hardened keys makes it impossible to create child public keys without knowing the parent
private key.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 49

Chapter 3: Extensions to PKCS#11

Key Derivation
Two newmechanisms are added to support all the key derivations in BIP32.

CKM_BIP32_MASTER_DERIVE
This mechanism derives the master key pair from a seed. The input key must have the type CKK_GENERIC_
SECRET (size between 128 and 512 bits). This mechanism is unique in that it derives two keys from one. This
requires us to accept two templates as input, and to output the two derived key handles. In order to avoid
confusion, the three last arguments of C_DeriveKey()(pTemplate, ulAttributeCount and phKey)
must be null or zero. CKR_ARGUMENTS_BAD is returned if any of those parameters is non-NULL. The
templates and returned handles are instead passed in through the mechanism parameters, which are clearly
labeled public and private. Choose to not generate the public or private key by leaving those parameters as
zero or null.
typedef struct CK_BIP32_MASTER_DERIVE_PARAMS {
 CK_ATTRIBUTE_PTR pPublicKeyTemplate;
 CK_ULONG ulPublicKeyAttributeCount;
 CK_ATTRIBUTE_PTR pPrivateKeyTemplate;
 CK_ULONG ulPrivateKeyAttributeCount;
 CK_OBJECT_HANDLE hPublicKey; // output parameter
 CK_OBJECT_HANDLE hPrivateKey; // output parameter
} CK_BIP32_MASTER_DERIVE_PARAMS;

See "Code Samples" on page 53 for a code example.

CKM_BIP32_CHILD_DERIVE
This mechanism derives child keys from a parent key. The mechanism can generate both the private and
public part of the key pair, and can accept a BIP32 public or private key as input. An error is returned if a public
to private derivation is attempted. Like the master key derivation, the templates and key handle outputs are
passed through the mechanism parameters. Choose to not generate the public or private key by leaving those
parameters as zero or null.

The BIP32 and BIP44 specifications recommend wallet structures and use cases. The specifications provide a
good reference for deciding how a key tree should be organized and if a particular key should be hardened or
not. Follow the specifications to avoid potential security holes.

This mechanism can be used to generate keys that are several levels deep in the key hierarchy. The path of
the key is specified with pulPath and ulPathLen. The path is an array of integers (key indices). The path is
relative to the input key. For example, if the path is [5, 1, 4] and the path of the input key is m/0 then the
resulting path is m/0/5/1/4.
typedef struct CK_BIP32_CHILD_DERIVE_PARAMS {
 CK_ATTRIBUTE_PTR pPublicKeyTemplate;
 CK_ULONG ulPublicKeyAttributeCount;
 CK_ATTRIBUTE_PTR pPrivateKeyTemplate;
 CK_ULONG ulPrivateKeyAttributeCount;
 CK_ULONG_PTR pulPath;
 CK_ULONG ulPathLen;
 CK_OBJECT_HANDLE hPublicKey; // output parameter
 CK_OBJECT_HANDLE hPrivateKey; // output parameter
 CK_ULONG ulPathErrorIndex; // output parameter
} CK_BIP32_CHILD_DERIVE_PARAMS;

See "Code Samples" on page 53 for a code example.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 50

Chapter 3: Extensions to PKCS#11

Error Codes
These mechanisms can fail in ways not applicable to other mechanisms.

CKR_BIP32_CHILD_INDEX_INVALID: This error is returned on the rare occurrence (1 / 2^127) that a child
derivation returns an all-zero private key, a private key bigger than or equal to the curve order parameter n, or
a point at infinity. This error signifies that the child key index cannot be used to derive keys. Choose a different
index and try the derivation again. The problematic child index is indicated by ulPathErrorIndex.

PCKS#11 does not have fixed width integers. This error can also be returned on platforms where CK_ULONG is
bigger than 32 bits and a child index is bigger than 2^32 – 1.

CKR_BIP32_INVALID_HARDENED_DERIVATION: This error is returned from an attempt to derive a
hardened key from a public key. The BIP32 specification does not support such a derivation.

CKR_BIP32_MASTER_SEED_LEN_INVALID: The BIP32 specification recommends deriving the master
key from a seed that is between 128 and 512 bits long. This error is returned if the seed length is outside of that
range.

CKR_BIP32_MASTER_SEED_INVALID: This error is returned on the rare occurrence (1 / 2^127) that the
master derivation returns an all zero private key, a private key bigger than or equal to the curve order
parameter n, or a point at infinity. This error signifies that the master seed cannot be used for BIP32. Generate
a newmaster seed and retry the derivation.

CKR_BIP32_INVALID_KEY_PATH_LEN: This error is returned when ulPathLen is 0 or greater than 255.
The BIP44 standard only requires paths of length 5 so this limit should be acceptable for all customers.

Key Attributes
The following attributes will exist on all keys created with one of the above derivation mechanisms.

CKA_BIP32_CHAIN_CODE: The chain code is essential for BIP32 keys and is used to derive future keys.
The public and private key share this value. Read only.

CKA_BIP32_VERSION_BYTES: Version bytes are used to further identify BIP32 keys. The version bytes
help determine if a key is used on the main bitcoin network or the test network. This attribute defaults to CKG_
BIP32_VERSION_MAINNET_PUB/PRIV if it was not specified at key creation time. You can set this value to
CKG_BIP32_VERSION_TESTNET_PUB/PRIV if applicable.

CKA_BIP32_CHILD_INDEX: The child index stores which index was used to derive this key. An index with
the CKF_BIP32_HARDENED bit set is considered a hardened child. The child index is 0 for the master key.
The public and private key share this value. Read only.

CKA_BIP32_CHILD_DEPTH: The depth of the child key in the key tree. The master key has a depth of 0.
The public and private key share this value. Read only.

CKA_BIP32_ID: The unique identifier for the key. This value is derived from the HASH160 of the compressed
public key. The first 32 bits of this value is known as the fingerprint. (CKA_ID is not used for this purpose
because it is writable by the user.) The public and private key share this value. Read only.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 51

Chapter 3: Extensions to PKCS#11

NOTE No attribute is included for the parent ID because it should not be required. The
anticipated use-case is to derive a key, use it and then delete it. In general, there should not
be a need to discover how keys are organized based on the fingerprints or IDs. The parent
fingerprint is available in case there is need to rediscover a key tree, but the wallet software
must deal with any collisions. The BIP32 designers considered the parent ID not sufficiently
important to include in serialized keys; therefore we exclude it as well.

CKA_BIP32_FINGERPRINT and CKA_BIP32_PARENT_FINGERPRINT:
The fingerprints for the key and parent key are the first 32 bits of the BIP32 key identifier. These can be used to
identify keys but the wallet software must handle any collisions. For identifying keys, it is better to use CKA_
BIP32_ID because it is long enough that collisions should not be an issue. The public and private key share
this value. The master key has a parent fingerprint of 0. Read only.

Public Key Import/Export
To support importing existing BIP32 keys, we support their serialization format. For public keys, we will have
functions in our library to facilitate importing and exporting.
CK_RV CA_Bip32ImportPubKey(
 CK_SESSION_HANDLE hSession,
 CK_ATTRIBUTE_PTR pTemplate,
 CK_ULONG ulCount,
 const CK_CHAR_PTR pKey, //in BIP32 serialization format
 CK_OBJECT_HANDLE_PTR phObject
);
CK_RV CA_Bip32ExportPubKey(
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE hObject,
 CK_CHAR_PTR pKey, //in BIP32 serialization format
 CK_ULONG_PTR pulKeyLen //on input contains max. buffer size, returns
 // actual size
);
Importing is done with CA_Bip32ImportPubKey(). The function is similar to C_CreateObject() but it
takes an additional parameter for the serialized public key. The template passed in should contain all the
desired non-BIP32 attributes like CKA_TOKEN, CKA_PRIVATE, CKA_DERIVE, etc. The function decodes the
public key to get all the BIP32 attributes. Both sets of attributes are then used to create the public key on the
HSM.

NOTE When importing a serialized extended public key, implementations must verify
whether the X coordinate in the public key data corresponds to a point on the curve. If not, the
extended public key is invalid.

Exporting is done with CA_Bip32ExportPubKey(). The specified object is extracted from the HSM and
encoded in the BIP32 format. The result is a NULL-terminated string and is placed in the pKey parameter. The
length of pKey has a maximum of 112 characters. This constant is defined as CKG_BIP32_MAX_
SERIALIZED_LEN. It’s possible that not all characters are needed to serialize the key. Any unused
characters are set to 0.

See "Code Samples" on the next page for code examples.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 52

Chapter 3: Extensions to PKCS#11

BIP32 Serialization Format
Extended public and private keys are serialized as follows:

> 4 byte: version bytes (mainnet: 0x0488B21E public, 0x0488ADE4 private; testnet: 0x043587CF public,
0x04358394 private)

> 1 byte: depth: 0x00 for master nodes, 0x01 for level-1 derived keys,

> 4 bytes: the fingerprint of the parent's key (0x00000000 if master key)

> 4 bytes: child number (index) – 32-bit unsigned integer with most significant byte first (0x00000000 if master
key)

> 32 bytes: the chain code

> 33 bytes: the public key or private key data

This 78 byte structure is encoded like other Bitcoin data in Base58, by first adding 32 checksum bits (derived
from the double SHA-256 checksum), and then converting to the Base58 representation. This results in a
Base58-encoded string of up to CKG_BIP32_MAX_SERIALIZED_LEN characters. Because of the choice of
the version bytes, the Base58 representation will start with "xprv" or "xpub" on mainnet, "tprv" or "tpub" on
testnet.

Private Key Import/Export
Private keys can be imported and exported with existing PKCS#11 functions. They can be imported and
exported only if the HSM uses the key wrap model instead of cloning. Import a key by calling C_Encrypt*()
on the serialized key followed by C_UnwrapKey(). Exporting keys by calling C_WrapKey() followed by C_
Decrypt*(). Use C_WrapKey() and C_UnwrapKey() to store keys off the HSM, or to move them
between HSMs.

See "Code Samples" below for code examples.

Key Backup and Cloning
Backups and cloning of BIP32 keys are supported only between version 7.x Luna HSMs. Further, cloning of
BIP32 keys is supported only in firmware versions that have BIP32 support. BIP32 keys cannot be cloned to
older firmware versions made before BIP32 support was added.

Non-FIPS Algorithm
The BIP32 mechanisms are available only if non-FIPS algorithms are allowed.

Host Tools
Multitoken and Ckdemo support BIP32.

Code Samples

Deriving the master key pair
We highly recommend setting CKA_PRIVATE on the master public and private keys to TRUE to prevent the
chain code from being seen by unauthorized users. The master key should be used only for derivations so it is
the only operation allowed. The version bytes default to 0x0488B21E/0x0488ADE4 for the public/private keys if

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 53

Chapter 3: Extensions to PKCS#11

the attribute is missing in the template. Those are the values specified in BIP32 for keys on the main bitcoin
network.
CK_ATTRIBUTE pubTemplate[] =
{

{CKA_TOKEN, &bToken, sizeof(bToken)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_DERIVE, &bTrue, sizeof(bTrue)},
{CKA_MODIFIABLE, &bTrue, sizeof(bTrue)},
{CKA_LABEL, pbLabel, strlen(pbLabel)},

};
CK_ATTRIBUTE privTemplate[] =
{

{CKA_TOKEN, &bToken, sizeof(bToken)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_SENSITIVE, &bTrue, sizeof(bTrue)},
{CKA_DERIVE, &bTrue, sizeof(bTrue)},
{CKA_MODIFIABLE, &bTrue, sizeof(bTrue)},
{CKA_LABEL, pbLabel, strlen(pbLabel)},

};

CK_BIP32_MASTER_DERIVE_PARAMS mechParams;
mechParams.pPublicKeyTemplate = pubTemplate;
mechParams.ulPublicKeyAttributeCount = ARRAY_SIZE(pubTemplate);
mechParams.pPrivateKeyTemplate = privTemplate;
mechParams.ulPrivateKeyAttributeCount = ARRAY_SIZE(privTemplate);
CK_MECHANISM mechanism = {CKM_BIP32_MASTER_DERIVE, &mechParams, sizeof(mechParams)};

CK_RV rv = C_DeriveKey(hSession, &mechanism, hSeedKey, NULL, 0, NULL);
// fail if rv != CKR_OK

CK_OBJECT_HANDLE pubKey = mechanism.hPublicKey;
CK_OBJECT_HANDLE privKey = mechanism.hPrivateKey;
The new key handles will be stored in pubKey and privKey if the derivation was successful.

Deriving a child leaf key
We highly recommend setting CKA_PRIVATE on the child public and private keys to TRUE to prevent the
chain code from being seen by unauthorized users. A child leaf key (the bottom key in the tree) should not be
used for derivation, and is meant for signing, verifying, encrypting and decrypting. Parent child keys need the
derive attribute turned on. The version bytes default to 0x0488B21E/0x0488ADE4 for the public/private keys if
the attribute is missing. Those are the values specified in BIP32 for keys on the main bitcoin network.
CK_ATTRIBUTE pubTemplate[] =
{

{CKA_TOKEN, &bToken, sizeof(bToken)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_ENCRYPT, &bTrue, sizeof(bTrue)},
{CKA_VERIFY, &bTrue, sizeof(bTrue)},
{CKA_MODIFIABLE, &bTrue, sizeof(bTrue)},
{CKA_LABEL, pbLabel, strlen(pbLabel)},

};
CK_ATTRIBUTE privTemplate[] =
{

{CKA_TOKEN, &bToken, sizeof(bToken)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_SENSITIVE, &bTrue, sizeof(bTrue)},
{CKA_SIGN, &bTrue, sizeof(bTrue)},

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 54

Chapter 3: Extensions to PKCS#11

{CKA_DECRYPT, &bTrue, sizeof(bTrue)},
{CKA_MODIFIABLE, &bTrue, sizeof(bTrue)},
{CKA_LABEL, pbLabel, strlen(pbLabel)},

};

CK_ULONG path[] = {
CKF_BIP32_HARDENED | CKG_BIP44_PURPOSE,
CKF_BIP32_HARDENED | CKG_BIP44_COIN_TYPE_BTC,
CKF_BIP32_HARDENED | 1,
CKG_BIP32_EXTERNAL_CHAIN,
0

};

CK_BIP32_MASTER_DERIVE_PARAMS mechParams;
mechParams.pPublicKeyTemplate = pubTemplate;
mechParams.ulPublicKeyAttributeCount = ARRAY_SIZE(pubTemplate);
mechParams.pPrivateKeyTemplate = privTemplate;
mechParams.ulPrivateKeyAttributeCount = ARRAY_SIZE(privTemplate);
mechParams.pulPath = path;
mechParams.ulPathLen = ARRAY_SIZE(path);
CK_MECHANISM mechanism = {CKM_BIP32_CHILD_DERIVE, &mechParams, sizeof(mechParams)};

CK_RV rv = C_DeriveKey(hSession, &mechanism, hMasterPrivKey, NULL, 0, NULL);
// fail if rv != CKR_OK

CK_OBJECT_HANDLE pubKey = mechanism.hPublicKey;
CK_OBJECT_HANDLE privKey = mechanism.hPrivateKey;
The new key handles are stored in pubKey and privKey if the derivation was successful. The path
generates a key pair that follows the BIP44 convention and can be used to receive BTC.

Importing a public extended key
CK_ATTRIBUTE template[] =
{

{CKA_TOKEN, &bToken, sizeof(bToken)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_DERIVE, &bTrue, sizeof(bTrue)},
{CKA_MODIFIABLE, &bTrue, sizeof(bTrue)},
{CKA_LABEL, pbLabel, strlen(pbLabel)},

};

CK_CHAR_PTR encodedKey = “xpub661MyMwAqRbcFtXgS5…”; //BIP32 serialization format
CK_OBJECT_HANDLE pubKey;

CK_RV rv = CA_Bip32ImportKey(hSession, template, ARRAY_SIZE(template), encodedKey, &pubKey);
The handle for the newly create key is stored in pubKey if the import was successful.

Exporting a public extended key
CK_CHAR encodedKey[CKG_BIP32_MAX_SERIALIZED_LEN+1];
CK_ULONG ulEncodedKeySize = sizeof(encodedKey);

CK_RV rv = CA_Bip32ExportPubKey(hSession, hObject, encodedKey, &ulEncodedKeySize);
The encoded key is stored in encodedKey (BIP32 serialization format) if there were no errors.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 55

Chapter 3: Extensions to PKCS#11

Importing a private extended key
CK_ATTRIBUTE template[] =
{

{CKA_CLASS &keyClass, sizeof(keyClass)},
{CKA_TOKEN, &bToken, sizeof(bToken)},
{CKA_KEY_TYPE &keyType, sizeof(keyType)},
{CKA_PRIVATE, &bTrue, sizeof(bTrue)},
{CKA_DERIVE, &bTrue, sizeof(bTrue)},
{CKA_MODIFIABLE, &bTrue, sizeof(bTrue)},
{CKA_LABEL, pbLabel, strlen(pbLabel)},
{CKA_SENSITIVE &bTrue, sizeof(bTrue)},

};

CK_CHAR_PTR encodedKey = “xprv9s21ZrQH143K3QTDL4LXw2F…”;
CK_MECHANISM mechanism = {CKM_AES_KWP, NULL, 0};
CK_BYTE wrappedKey[256];
CK_ULONG wrappedKeyLen = sizeof(wrappedKey);
CK_OBJECT_HANDLE hUnwrappedKey;

CK_RV rv = C_EncryptInit(hSession, &mechanism, hWrappingKey);
// fail if rv != CKR_OK

rv = C_Encrypt(hSession, encodedKey, sizeof(encodedKey), wrappedKey, &wrappedKeyLen);
// fail if rv != CKR_OK

rv = C_UnwrapKey(hSession, &mechanism, hWrappingKey, wrappedKey, wrappedKeyLen, template, ARRAY_
SIZE(template), &hUnwrappedKey);
After unwrapping, the encoded key's BIP32 serialization format is decoded (the template key type is checked
for BIP32). The handle of the unwrapped key is stored in hUnwrappedKey if there were no errors.

Exporting a private extended key
CK_MECHANISM mechanism = {CKM_AES_KWP, NULL, 0};
CK_BYTE key[256];
CK_ULONG keyLen = sizeof(key);

CK_RV rv = C_WrapKey(hSession, &mechanism, hWrappingKey, hKeyToWrap, key, &keyLen);
// fail if rv != CKR_OK

rv = C_DecryptInit(hSession, &mechanism, hWrappingKey);
// fail if rv != CKR_OK

rv = C_Decrypt(hSession, key, keyLen, key, &keyLen);
// fail if rv != CKR_OK

key[keyLen] = 0 // The key isn’t NULL terminated after C_Decrypt().
C_WrapKey() must convert the BIP32 key to the BIP32 serialization format before wrapping.

The serialized key is stored in key if there were no errors.

PKCS#11 Definitions
#define CKK_BIP32 (CKK_VENDOR_DEFINED | 0x14)
#define CKM_BIP32_MASTER_DERIVE (CKM_VENDOR_DEFINED | 0xE00)
#define CKM_BIP32_CHILD_DERIVE (CKM_VENDOR_DEFINED | 0xE01)
#define CKR_BIP32_CHILD_INDEX_INVALID (CKR_VENDOR_DEFINED | 0x83)
#define CKR_BIP32_INVALID_HARDENED_DERIVATION (CKR_VENDOR_DEFINED | 0x84)
#define CKR_BIP32_MASTER_SEED_LEN_INVALID (CKR_VENDOR_DEFINED | 0x85)

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 56

Chapter 3: Extensions to PKCS#11

#define CKR_BIP32_MASTER_SEED_INVALID (CKR_VENDOR_DEFINED | 0x86)
#define CKR_BIP32_INVALID_KEY_PATH_LEN (CKR_VENDOR_DEFINED | 0x87)
#define CKA_BIP32_CHAIN_CODE (CKA_VENDOR_DEFINED | 0x1100)
#define CKA_BIP32_VERSION_BYTES (CKA_VENDOR_DEFINED | 0x1101)
#define CKA_BIP32_CHILD_INDEX (CKA_VENDOR_DEFINED | 0x1102)
#define CKA_BIP32_CHILD_DEPTH (CKA_VENDOR_DEFINED | 0x1103)
#define CKA_BIP32_ID (CKA_VENDOR_DEFINED | 0x1104)
#define CKA_BIP32_FINGERPRINT (CKA_VENDOR_DEFINED | 0x1105)
#define CKA_BIP32_PARENT_FINGERPRINT (CKA_VENDOR_DEFINED | 0x1106)
#define CKG_BIP32_VERSION_MAINNET_PUB (0x0488B21E)
#define CKG_BIP32_VERSION_MAINNET_PRIV (0x0488ADE4)
#define CKG_BIP32_VERSION_TESTNET_PUB (0x043587CF)
#define CKG_BIP32_VERSION_TESTNET_PRIV (0x04358394)
#define CKG_BIP44_PURPOSE (0x0000002C)
#define CKG_BIP44_COIN_TYPE_BTC (0x00000000)
#define CKG_BIP44_COIN_TYPE_BTC_TESTNET (0x00000001)
#define CKG_BIP32_EXTERNAL_CHAIN (0x00000000)
#define CKG_BIP32_INTERNAL_CHAIN (0x00000001)
#define CKG_BIP32_MAX_SERIALIZED_LEN (112)
#define CKF_BIP32_HARDENED (0x80000000)
#define CKF_BIP32_MAX_PATH_LEN (255)

Derive Template
The CKA_DERIVE_TEMPLATE attribute is an optional extension to the C_DeriveKey function. This attribute
points to an array template which provides additional security by restricting important attributes in the resulting
derived key. This derive template, along with the user-supplied application template (called pTemplate in the
PKCS#11 specification), determine the attributes of the derived key.

To invoke a derive template, the base key must have the CKA_DERIVE_TEMPLATE attribute set, pointing to a
user-supplied derive template. When you specify this attribute on the base key and then attempt to derive a
key, the derive operation adds the attributes of the application template to the attributes in the derive template.
If there are any mismatches between attribute values specified in the two templates, the derive operation fails.
Otherwise, the operation succeeds, producing a derived key with the combined attributes of the two templates.

Any and all attributes which are valid for application template of a particular mechanism are also valid for the
derive template. For security, the most effective attributes to restrict are those which might allow the derived
key to be misused or expose secret information. Broadly these include but are not limited to
encryption/decryption capabilities, extractability, the CKA_SENSITIVE attribute and the CKA_
MODIFIABLE attribute. All mechanisms which support key derivation also support derive templates.

Examples
The following examples show a successful derivation with a derive template, and a failed derivation.

Successful Derivation
Here, the base key has the CKA_DERIVE_TEMPLATE attribute pointing to the derive template dTmplt. There
are no conflicts between dTmplt and the application template. The application template's extra attributes are
added to dTmplt's attributes, and the derivation operation produces a derived key containing the attributes in
the two templates.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 57

Chapter 3: Extensions to PKCS#11

Failed Derivation
Here, the base key has the CKA_DERIVE_TEMPLATE attribute pointing to the derive template dTmplt. Notice
that dTmplt has the CKA_DECRYPT attribute set to false, where the application template has the CKA_
DECRYPT attribute set to true. This conflict causes the derivation operation to fail with the error TEMPLATE_
INCONSISTENT.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 58

Chapter 3: Extensions to PKCS#11

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 59

CHAPTER 4: Supported Mechanisms

This chapter provides an alphabetical listing of the supported PKCS#11 standard mechanisms and Thales
Group-proprietary mechanisms supported in firmware 7.4.0.

CKM_AES_CBC

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 60

Chapter 4: Supported Mechanisms

CKM_AES_CBC_ENCRYPT_DATA

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 61

Chapter 4: Supported Mechanisms

CKM_AES_CBC_PAD

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 62

Chapter 4: Supported Mechanisms

CKM_AES_CBC_PAD_IPSEC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CBC_PAD_IPSEC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 63

Chapter 4: Supported Mechanisms

CKM_AES_CFB8

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 1

Key types AES

Algorithms AES

Modes CFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 64

Chapter 4: Supported Mechanisms

CKM_AES_CFB128

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 16

Key types AES

Algorithms AES

Modes CFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 65

Chapter 4: Supported Mechanisms

CKM_AES_CMAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes MAC

Flags Extractable | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 66

Chapter 4: Supported Mechanisms

CKM_AES_CMAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes MAC

Flags Extractable | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 67

Chapter 4: Supported Mechanisms

CKM_AES_CTR

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes CTR

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 68

Chapter 4: Supported Mechanisms

CKM_AES_ECB

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 69

Chapter 4: Supported Mechanisms

CKM_AES_ECB_ENCRYPT_DATA

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 70

Chapter 4: Supported Mechanisms

CKM_AES_GCM
GCM is the Galois/Counter Mode of operation of the AES algorithm for symmetric key encryption.

Usage Notes

Data size
The maximum allowed data size for this mechanism is 64KB (64 * 1024).

Initialization Vector (IV)
Random initialization vector (IV) is supported and recommended for GCM and for GMAC. In FIPSmode, the
HSM firmware does not accept the IV parameter, and instead returns a generated IV.

The internal IV is a randomly generated 16-byte IV.

JCPROV
AES-GMAC and AES-GCM are supported in JCPROV. Use CK_AES_CMAC_PARAMS.java to define the
GMAC operation. Implementation is the same as for PKCS#11.

Accumulating data
Our GMAC and GCM are single part operations, so even if they are called using multi-part API, we accumulate
the data (up to a maximum) and return data only on the “final” operation. That is the meaning of "Accumulating"
in the table, below.

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 71

Chapter 4: Supported Mechanisms

Modes GCM

Flags Extractable | Accumulating

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 72

Chapter 4: Supported Mechanisms

CKM_AES_GMAC
GCM is the Galois/Counter Mode of operation of the AES algorithm for symmetric key encryption.

GMAC is a variant of GCM for sign/verify operation. If GCM input is confined to data that will not be encrypted,
then GMAC is purely an authentication mode on the input data. The SafeNet Luna Network HSM GMAC
implementation, formerly invoked only via PKCS#11 interface, can now be accessed via JCPROV and via our
Java Provider (see Notes, below).

The GMAC implementation follows NIST SP-800-38D. It supports AES symmetric key sizes of 128, 192, and
256 bits.

Usage Notes

Initialization Vector (IV)
If the HSM is in FIPSmode (see HSM policy 12 atHSMCapabilities and Policies), the initialization vector (IV) is
generated in the HSM and returned to the PKCS#11 function call. The buffer must be large enough to store the
GMAC tag plus the generated IV (which has a length of 16 bytes).

If the HSM is not in FIPSmode, then the developer is responsible to specify an IV. Random IV is supported and
recommended for GCM and GMAC. If you are not using random IV, then the most efficient IV value length is 12
bytes; any other size reduces performance and requires more work (per NIST SP-800-38D).

The internal IV is a randomly generated 16-byte IV.

Performance
For authentication, it is possible to use CKM_AES_GCMmechanism, when passing no data to encrypt (for
strict compliance with NIST specification), and performance in that mode is better than in previous SafeNet
releases.

The correlation is not exact but, as a general rule for a given mechanism, invocation by PKCS#11 API always
provides the best performance, JSP performance is close but lower due to Java architecture, and JCPROV
performance is somewhat lower still than PKCS#11 and JSP performance levels.

JCPROV
AES-GMAC and AES-GCM are supported in JCPROV. Use CK_AES_CMAC_PARAMS.java to define the
GMAC operation. Implementation is the same as for PKCS#11.

Java Provider (JSP)
Both GMC and GMAC are supported. "GmacAesDemo.java" provides a sample for using GMACwith Java.

Java Parameter Specification class LunaGmacParameterSpec.java defines default values recommended by
the NIST specification.

Accumulating Data
Our GMAC and GCM are single part operations, so even if they are called using multi-part API, we accumulate
the data (up to a maximum) and return data only on the “final” operation. That is the meaning of "Accumulating"
in the table, below.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 73

Chapter 4: Supported Mechanisms

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes GCM

Flags Extractable | Accumulating

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 74

Chapter 4: Supported Mechanisms

CKM_AES_KEY_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types AES

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 75

Chapter 4: Supported Mechanisms

CKM_AES_KW
NIST Special Publication 800-38F describes cryptographic methods that are approved for “key wrapping,” that
is, the protection of the confidentiality and integrity of cryptographic keys. In addition to describing existing
methods, that publication specifies two new, deterministic authenticated-encryption modes of operation of the
Advanced Encryption Standard (AES) algorithm: the AESKeyWrap (KW) mode and the AESKeyWrap With
Padding (KWP) mode. Gemalto's SafeNet Luna Network HSM implements the AESKeyWrap (KW) mode at
this time, which SP800-38F recommends as more secure than CKM_AES_CBC.

NOTE NIST Special Publication 800-38F recommends this method as more secure than
CKM_AES_CBC.

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 8

Digest size 0

Key types AES

Algorithms AES

Modes KEYWRAP

Flags Extractable | Accumulating

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 76

Chapter 4: Supported Mechanisms

CKM_AES_KWP

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 8

Digest size 0

Key types AES

Algorithms AES

Modes KEYWRAP_PAD

Flags Extractable | Accumulating

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 77

Chapter 4: Supported Mechanisms

CKM_AES_MAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 78

Chapter 4: Supported Mechanisms

CKM_AES_MAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 79

Chapter 4: Supported Mechanisms

CKM_AES_OFB

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes OFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 80

Chapter 4: Supported Mechanisms

CKM_AES_XTS

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types AES

Algorithms AES

Modes XTS

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 81

Chapter 4: Supported Mechanisms

CKM_ARIA_CBC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 82

Chapter 4: Supported Mechanisms

CKM_ARIA_CBC_ENCRYPT_DATA

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types ARIA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 83

Chapter 4: Supported Mechanisms

CKM_ARIA_CBC_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 84

Chapter 4: Supported Mechanisms

CKM_ARIA_CFB8

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 1

Key types ARIA

Algorithms ARIA

Modes CFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 85

Chapter 4: Supported Mechanisms

CKM_ARIA_CFB128

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 16

Key types ARIA

Algorithms ARIA

Modes CFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 86

Chapter 4: Supported Mechanisms

CKM_ARIA_CMAC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 87

Chapter 4: Supported Mechanisms

CKM_ARIA_CMAC_GENERAL

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 88

Chapter 4: Supported Mechanisms

CKM_ARIA_CTR

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CTR

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 89

Chapter 4: Supported Mechanisms

CKM_ARIA_ECB

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 90

Chapter 4: Supported Mechanisms

CKM_ARIA_ECB_ENCRYPT_DATA

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types ARIA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 91

Chapter 4: Supported Mechanisms

CKM_ARIA_KEY_GEN

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types ARIA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 92

Chapter 4: Supported Mechanisms

CKM_ARIA_L_CBC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Decrypt | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 93

Chapter 4: Supported Mechanisms

CKM_ARIA_L_CBC_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Decrypt | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 94

Chapter 4: Supported Mechanisms

CKM_ARIA_L_ECB

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Decrypt | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 95

Chapter 4: Supported Mechanisms

CKM_ARIA_L_MAC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 96

Chapter 4: Supported Mechanisms

CKM_ARIA_L_MAC_GENERAL

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 97

Chapter 4: Supported Mechanisms

CKM_ARIA_MAC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 98

Chapter 4: Supported Mechanisms

CKM_ARIA_MAC_GENERAL

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 99

Chapter 4: Supported Mechanisms

CKM_ARIA_OFB

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 16

Digest size 0

Key types ARIA

Algorithms ARIA

Modes OFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 100

Chapter 4: Supported Mechanisms

CKM_BIP32_CHILD_DERIVE
This mechanism is used to derive child keys from a parent key, and can generate both the private and public
part of the key pair, accepting a BIP32 public or private key as input.

Cloning (or backup) of BIP32 keys can be performed only between PCIe and/or Network HSMs containing
firmware versions that support BIP32.

See "BIP32MechanismSupport and Implementation" on page 49.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types BIP32

Algorithms None

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 101

Chapter 4: Supported Mechanisms

CKM_BIP32_MASTER_DERIVE
This mechanism is used to derive the master key pair from a seed. The input key must have the type CKK_
GENERIC_SECRET (size between 128 and 512 bits).

Only curve secp256k1 is supported. Key type CKK_BIP32 is introduced; existing ECDSA keys cannot be
used with the BIP32 mechanisms. All mechanisms supported by ECDSA keys are supported for BIP32 keys.

Cloning (or backup) of BIP32 keys can be performed only between PCIe and/or Network HSMs containing
firmware versions that support BIP32.

See "BIP32MechanismSupport and Implementation" on page 49.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 512

Block size 0

Digest size 0

Key types GENERIC_SECRET

Algorithms None

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 102

Chapter 4: Supported Mechanisms

CKM_CAST3_CBC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 103

Chapter 4: Supported Mechanisms

CKM_CAST3_CBC_PAD

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 104

Chapter 4: Supported Mechanisms

CKM_CAST3_ECB

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 105

Chapter 4: Supported Mechanisms

CKM_CAST3_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types CAST3

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 106

Chapter 4: Supported Mechanisms

CKM_CAST3_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 107

Chapter 4: Supported Mechanisms

CKM_CAST3_MAC_GENERAL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types CAST3

Algorithms CAST3

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 108

Chapter 4: Supported Mechanisms

CKM_CAST5_CBC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 109

Chapter 4: Supported Mechanisms

CKM_CAST5_CBC_PAD

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 110

Chapter 4: Supported Mechanisms

CKM_CAST5_ECB

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 111

Chapter 4: Supported Mechanisms

CKM_CAST5_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 0

Digest size 0

Key types CAST5

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 112

Chapter 4: Supported Mechanisms

CKM_CAST5_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 113

Chapter 4: Supported Mechanisms

CKM_CAST5_MAC_GENERAL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 8

Digest size 0

Key types CAST5

Algorithms CAST5

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 114

Chapter 4: Supported Mechanisms

CKM_DES_CBC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 115

Chapter 4: Supported Mechanisms

CKM_DES_CBC_ENCRYPT_DATA

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 116

Chapter 4: Supported Mechanisms

CKM_DES_CBC_PAD

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 117

Chapter 4: Supported Mechanisms

CKM_DES_CFB8

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 1

Key types DES3

Algorithms DES3

Modes CFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 118

Chapter 4: Supported Mechanisms

CKM_DES_CFB64

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 8

Key types DES3

Algorithms DES3

Modes CFB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 119

Chapter 4: Supported Mechanisms

CKM_DES_ECB

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 120

Chapter 4: Supported Mechanisms

CKM_DES_ECB_ENCRYPT_DATA

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 121

Chapter 4: Supported Mechanisms

CKM_DES_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 0

Digest size 0

Key types DES

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 122

Chapter 4: Supported Mechanisms

CKM_DES_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 123

Chapter 4: Supported Mechanisms

CKM_DES_MAC_GENERAL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 8

Digest size 0

Key types DES

Algorithms DES

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 124

Chapter 4: Supported Mechanisms

CKM_DES_OFB64

Summary

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 125

Chapter 4: Supported Mechanisms

CKM_DES2_DUKPT_DATA
The CKM_DES2_DUKPT family of key derive mechanisms create keys used to protect EFTPOS terminal
sessions. The mechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI
X9.24 part 1.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

> Only CKK_DES2 keys can be derived. The mechanism will force the CKA_KEY_TYPE attribute of the
derived object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be
CKK_DES2.

> The mechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

> The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number
(KSN).

> This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting
object.

The DUKPT MAC and DATA versions will default to the appropriate usage mechanism as described in the
following table:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 126

Chapter 4: Supported Mechanisms

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 127

Chapter 4: Supported Mechanisms

CKM_DES2_DUKPT_DATA_RESP
The CKM_DES2_DUKPT family of key derive mechanisms create keys used to protect EFTPOS terminal
sessions. The mechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI
X9.24 part 1.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

> Only CKK_DES2 keys can be derived. The mechanism will force the CKA_KEY_TYPE attribute of the
derived object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be
CKK_DES2.

> The mechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

> The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number
(KSN).

> This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting
object.

The DUKPT MAC and DATA versions will default to the appropriate usage mechanism as described in the
following table:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 128

Chapter 4: Supported Mechanisms

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 129

Chapter 4: Supported Mechanisms

CKM_DES2_DUKPT_MAC
The CKM_DES2_DUKPT family of key derive mechanisms create keys used to protect EFTPOS terminal
sessions. The mechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI
X9.24 part 1.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

> Only CKK_DES2 keys can be derived. The mechanism will force the CKA_KEY_TYPE attribute of the
derived object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be
CKK_DES2.

> The mechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

> The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number
(KSN).

> This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting
object.

The DUKPT MAC and DATA versions will default to the appropriate usage mechanism as described in the
following table:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 130

Chapter 4: Supported Mechanisms

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 131

Chapter 4: Supported Mechanisms

CKM_DES2_DUKPT_MAC_RESP
The CKM_DES2_DUKPT family of key derive mechanisms create keys used to protect EFTPOS terminal
sessions. The mechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI
X9.24 part 1.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

> Only CKK_DES2 keys can be derived. The mechanism will force the CKA_KEY_TYPE attribute of the
derived object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be
CKK_DES2.

> The mechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

> The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number
(KSN).

> This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting
object.

The DUKPT MAC and DATA versions will default to the appropriate usage mechanism as described in the
following table:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 132

Chapter 4: Supported Mechanisms

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 133

Chapter 4: Supported Mechanisms

CKM_DES2_DUKPT_PIN
The CKM_DES2_DUKPT family of key derive mechanisms create keys used to protect EFTPOS terminal
sessions. The mechanisms implement the algorithm for server side DUKPT derivation as defined by ANSI
X9.24 part 1.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
This mechanism has the following attributes:

> Only CKK_DES2 keys can be derived. The mechanism will force the CKA_KEY_TYPE attribute of the
derived object to equal CKK_DES2. If the template does specify a CKA_KEY_TYPE attribute then it must be
CKK_DES2.

> The mechanism takes a CK_KEY_DERIVATION_STRING_DATA structure as a parameter.

> The pData field of the parameter must point to a 10 byte array which holds the 80 bit Key Sequence Number
(KSN).

> This mechanism contributes the CKA_CLASS and CKA_KEY_TYPE and CKA_VALUE to the resulting
object.

The DUKPT MAC and DATA versions will default to the appropriate usage mechanism as described in the
following table:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 134

Chapter 4: Supported Mechanisms

Mechanism CKA_SIGN CKA_VERIFY CKA_DECRYPT CKA_ENCRYPT

CKM_DES2_DUKPT_MAC True True

CKM_DES2_DUKPT_MAC_RESP True

CKM_DES2_DUKPT_DATA True True

CKM_DES2_DUKPT_DATA_RESP True

Example
#define CKM_DES2_DUKPT_PIN (CKM_VENDOR_DEFINED + 0x611)
#define CKM_DES2_DUKPT_MAC (CKM_VENDOR_DEFINED + 0x612)
#define CKM_DES2_DUKPT_MAC_RESP (CKM_VENDOR_DEFINED + 0x613)
#define CKM_DES2_DUKPT_DATA (CKM_VENDOR_DEFINED + 0x614)
#define CKM_DES2_DUKPT_DATA_RESP (CKM_VENDOR_DEFINED + 0x615)

CK_OBJECT_HANDLE hBDKey; // handle of CKK_DES2 or CKK_DES2 Base Derive Key
CK_OBJECT_HANDLE hMKey; // handle of CKK_DES2 MAC session Key
CK_MECHANISM svMech = { CKM_DES3_X919_MAC , NULL, 0};

CK_KEY_DERIVATION_STRING_DATA param;
CK_MECHANISM kdMech = { CKM_DES2_DUKPT_MAC , NULL, 0};
CK_CHAR ksn[10];
CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Derive MAC verify session key
param.pData=ksn;
param.ulLen = 10;

kdMech.mechanism = CKM_DES2_DUKPT_MAC;
kdMech.pParameter = ¶m;
kdMech.ulParameterLen = sizeof parram;

C_DeriveKey(hSes, &kdMech, hBDKey , NULL, 0, &hMKey);

// Single part verify operation

C_VerifyInit(hSes, &svMech, hMKey);
len = sizeof mac;
C_Verify(hSes, inp, sizeof inp, mac, len);

// clean up

C_DestroyObject(hSes, hMKey);

// Test vectors

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 135

Chapter 4: Supported Mechanisms

CKM_DES2_KEY_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 128

Block size 0

Digest size 0

Key types DES2

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 136

Chapter 4: Supported Mechanisms

CKM_DES3_CBC

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 137

Chapter 4: Supported Mechanisms

CKM_DES3_CBC_ENCRYPT_DATA

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 138

Chapter 4: Supported Mechanisms

CKM_DES3_CBC_PAD

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 139

Chapter 4: Supported Mechanisms

CKM_DES3_CBC_PAD_IPSEC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CBC_PAD_IPSEC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 140

Chapter 4: Supported Mechanisms

CKM_DES3_CMAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 141

Chapter 4: Supported Mechanisms

CKM_DES3_CMAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 142

Chapter 4: Supported Mechanisms

CKM_DES3_CTR

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes CTR

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 143

Chapter 4: Supported Mechanisms

CKM_DES3_ECB

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 144

Chapter 4: Supported Mechanisms

CKM_DES3_ECB_ENCRYPT_DATA

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 145

Chapter 4: Supported Mechanisms

CKM_DES3_KEY_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 192

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 192

Maximum key length (bits) 192

Block size 0

Digest size 0

Key types DES3

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 146

Chapter 4: Supported Mechanisms

CKM_DES3_MAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 147

Chapter 4: Supported Mechanisms

CKM_DES3_MAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) 192

Minimum legacy key length for FIPS use (bits) 128

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 148

Chapter 4: Supported Mechanisms

CKM_DES3_X919_MAC
The CKM_DES3_X919_MAC is a signature generation and verification mechanism, as defined ANSI X9.19-
1996 Financial Institution Retail Message Authentication annex 1 Cipher Block Chaining Procedure.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 8

Digest size 0

Key types DES3

Algorithms DES3

Modes MAC

Flags Extractable

Usage
The CKM_DES3_X919_MACmechanism is used with the C_VerifyInit and C_SignInit functions. It has the
following attriobutes:

> Only CKK_DES2 and CKK_DES3 keys are supported.

> The mechanism takes no parameter.

> Multi-part operation is supported.

> The total input data length must be at least one byte.

> The length of result is half the size of the DES block (i.e. 4 bytes).

Example
#define CKM_DES3_X919_MAC (CKM_VENDOR_DEFINED + 0x150)

CK_OBJECT_HANDLE hKey; // handle of CKK_DES2 or CKK_DES3 key
CK_MECHANISM mech = { CKM_DES3_X919_MAC , NULL, 0};

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 149

Chapter 4: Supported Mechanisms

CK_CHAR inp[any length];
CK_CHAR mac[4];
CK_SIZE len;

// Single-part operation

C_SignInit(hSes, &mech, hKey);
len = sizeof mac;
C_Sign(hSes, inp, sizeof inp, mac, &len);

// Multi-part operation

C_SignInit(hSes, &mech, hKey);
C_SignUpdate(hSes, inp, sizeof inp/2);
C_SignUpdate(hSes, inp+ (sizeof inp)/2, sizeof inp/2);
len = sizeof mac;
C_SignFinal(hSes, mac, &len);

// Test vectors

static const UInt8 retailKey[16] =
{

0x58, 0x91, 0x25, 0x86, 0x3D, 0x46, 0x10, 0x7F,
0x46, 0x3E, 0x52, 0x3B, 0xF7, 0x46, 0x9D, 0x52

};

static const UInt8 retailInputAscii[19] =
{

't','h','e',' ','q','u','i','c','k',' ','b','r','o','w','n',' ','f','o','x'
};

static const UInt8 retailMACAscii[4] =
{

0x55, 0xA7, 0xBF, 0xBA
};

static const UInt8 retailInputEBCDIC[19] =
{

// "the quick brown fox" in EBCDIC
0xA3, 0x88, 0x85, 0x40, 0x98, 0xA4, 0x89, 0x83,
0x92, 0x40, 0x82, 0x99, 0x96, 0xA6, 0x95, 0x40,
0x86, 0x96, 0xA7

};

static const UInt8 retailMACEBCDIC[4] =
{

0x60, 0xAE, 0x2C, 0xD7
};

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 150

Chapter 4: Supported Mechanisms

CKM_DH_PKCS_DERIVE

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 151

Chapter 4: Supported Mechanisms

CKM_DH_PKCS_KEY_PAIR_GEN

Summary

FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 152

Chapter 4: Supported Mechanisms

CKM_DH_PKCS_PARAMETER_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 153

Chapter 4: Supported Mechanisms

CKM_DSA

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 0

Digest size 0

Key types DSA

Algorithms DSA

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 154

Chapter 4: Supported Mechanisms

CKM_DSA_KEY_PAIR_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 0

Digest size 0

Key types DSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 155

Chapter 4: Supported Mechanisms

CKM_DSA_PARAMETER_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 0

Digest size 0

Key types DSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 156

Chapter 4: Supported Mechanisms

CKM_DSA_SHA1

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 64

Digest size 20

Key types DSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 157

Chapter 4: Supported Mechanisms

CKM_DSA_SHA224

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 64

Digest size 28

Key types DSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 158

Chapter 4: Supported Mechanisms

CKM_DSA_SHA256

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 3072

Block size 64

Digest size 32

Key types DSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 159

Chapter 4: Supported Mechanisms

CKM_EC_EDWARDS_KEY_PAIR_GEN

Summary

FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types EDDSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 160

Chapter 4: Supported Mechanisms

CKM_EC_KEY_PAIR_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 161

Chapter 4: Supported Mechanisms

CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA

Algorithms None

Modes None

Flags Extra bits

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 162

Chapter 4: Supported Mechanisms

CKM_EC_MONTGOMERY_KEY_PAIR_GEN
Generate keys over Montgomery curves. Keys generated with this mechanism are of type CKK_EC_
MONTGOMERY. They can be used with the existing CKM_ECDH1_DERIVEmechanism. Given that the ECDH
mechanism is the same, and relies on "point multiply" on the given curve, no Montgomery-specific mechanism
is provided at this time. Allowed curve is "Curve25519".

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 256

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types EC_MONT

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 163

Chapter 4: Supported Mechanisms

CKM_ECDH1_COFACTOR_DERIVE

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA | BIP32

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 164

Chapter 4: Supported Mechanisms

CKM_ECDH1_DERIVE
Elliptic Curve Diffie-Hellman is an anonymous key-agreement protocol. CKM_ECDH1_DERIVE is the derive
function for that protocol.

NOTE To enhance performance, we have created a proprietary call CA_
DeriveKeyAndWrap, which is an optimization of C_DeriveKey with C_Wrap, merging the two
functions into one (the in and out constraints are the same as for the individual functions). A
further optimization is applied when mechanism CKM_ECDH1_DERIVE is used with CA_
DeriveKeyAndWrap.

If CA_DeriveKeyAndWrap is called with other mechanisms, those would not be optimized.

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA | EC_MONT | BIP32

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 165

Chapter 4: Supported Mechanisms

CKM_ECDSA

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA | BIP32

Algorithms ECDSA

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 166

Chapter 4: Supported Mechanisms

CKM_ECDSA_GBCS_SHA256

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 32

Key types ECDSA | BIP32

Algorithms SHA256

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 167

Chapter 4: Supported Mechanisms

CKM_ECDSA_SHA1

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 64

Digest size 20

Key types ECDSA | BIP32

Algorithms SHA

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 168

Chapter 4: Supported Mechanisms

CKM_ECDSA_SHA224

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 64

Digest size 28

Key types ECDSA | BIP32

Algorithms SHA224

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 169

Chapter 4: Supported Mechanisms

CKM_ECDSA_SHA256

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 64

Digest size 32

Key types ECDSA | BIP32

Algorithms SHA256

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 170

Chapter 4: Supported Mechanisms

CKM_ECDSA_SHA384

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 128

Digest size 48

Key types ECDSA | BIP32

Algorithms SHA384

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 171

Chapter 4: Supported Mechanisms

CKM_ECDSA_SHA512

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 128

Digest size *

Key types ECDSA | BIP32

Algorithms SHA512

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 172

Chapter 4: Supported Mechanisms

CKM_ECIES

NOTE This is a single part operation, so even if it is called using multi-part API, we
accumulate the data (up to a maximum) and return data only on the “final” operation. That is
the meaning of "Accumulating" in the table, below.

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt

Minimum key length (bits) 105

Minimum key length for FIPS use (bits) 224

Minimum legacy key length for FIPS use (bits) 160

Maximum key length (bits) 571

Block size 0

Digest size 0

Key types ECDSA | EC_MONT | BIP32

Algorithms None

Modes None

Flags Accumulating

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 173

Chapter 4: Supported Mechanisms

CKM_EDDSA
This mechanism makes use of keys generated by "CKM_EC_EDWARDS_KEY_PAIR_GEN" on page 160
(using keys generated over Edwards curves) for EDDSA signing. The keys used by this mechanism are of type
CKK_EC_EDWARDS. For SafeNet HSM, the EDDSA algorithm is compliant with “PureEDDSA” as defined in
RFC 8032 and “EdDSA for more curves, July 2015”.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types EDDSA

Algorithms SHA512

Modes None

Flags Extractable

Mechanism Parameters
Mechanism parameters are optional; not using the parameters selects the PureEdDSA algorithm ed25519.
Setting the prehashed flag (phFlag) to TRUEwill select the prehashed ed25519ph curve variant.
typedef struct CK_EDDSA_PARAMS
{

CK_BBOOL phFlag;
CK_ULONG ulContextDataLen;
CK_BYTE_PTR pContextData;

}

CK_EDDSA_PARAMS;

CK_EDDSA_PARAMS eddsaParams;
eddsaParams.phFlag = CK_TRUE; // Set prehashed flag to true for Ed25519ph. Setting it to

false or not using mechanism parameters does Ed25519.
eddsaParams.ulContextDataLen = 0; // Context length must be 0

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 174

Chapter 4: Supported Mechanisms

eddsaParams.pContextData = NULL; // Context must be NULL

CK_MECHANISM mechanism;
mechanism.mechanism = CKM_EDDSA;
mechanism.pParameter = &eddsaParams;
mechanism.ulParameterLen = sizeof(eddsaParams);

C_SignInit(hSession, &mechanism, hKey); // or C_VerifyInit
// followed by C_Sign, C_SignUpdate/C_SignFinal or verify equivalents.

OIDs and Algorithm Identifiers for 25519 Keys
NewOIDs and algorithm identifiers are as follows. Curve identifiers, including the plaintext curve names, must
be ASN.1-encoded.

Edwards 25519 (sign/verify)
Curve Identifier (CKA_ECDSA_PARAMS):

> “edwards25519” (RFC7748)

> “Ed25519” (RFC8410)

> 1.3.6.1.4.1.11591.15.1 (https://www.alvestrand.no/objectid/1.3.6.1.4.1.11591.15.1.html)

Key OIDs (wrap/unwrap):

> 1.3.101.100 (https://tools.ietf.org/html/draft-josefsson-pkix-eddsa-04)

> 1.3.101.112 (RFC8410)

Curve 25519 (ECDH)
Curve Identifier (CKA_ECDSA_PARAMS):

> “curve25519” (RFC7748)

> “X25519” (RFC8410)

> 1.3.6.1.4.1.3029.1.5.1 (http://oidref.com/1.3.6.1.4.1.3029.1.5.1)

Key OIDs (wrap/unwrap):

> 1.3.6.1.4.1.11591.7 (https://tools.ietf.org/html/draft-josefsson-pkix-newcurves-00)

> 1.3.101.110 (RFC8410)

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 175

https://www.alvestrand.no/objectid/1.3.6.1.4.1.11591.15.1.html
https://tools.ietf.org/html/draft-josefsson-pkix-eddsa-04
http://oidref.com/1.3.6.1.4.1.3029.1.5.1
https://tools.ietf.org/html/draft-josefsson-pkix-newcurves-00

Chapter 4: Supported Mechanisms

CKM_EDDSA_NACL
Use EDDSA keys in Networking and Cryptography Library ("salt") sign/verify operations.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 0

Digest size 0

Key types EDDSA

Algorithms SHA512

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 176

Chapter 4: Supported Mechanisms

CKM_GENERIC_SECRET_KEY_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 112

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 177

Chapter 4: Supported Mechanisms

CKM_HAS160

Summary

FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 20

Key types None

Algorithms HAS160

Modes None

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 178

Chapter 4: Supported Mechanisms

CKM_KCDSA_HAS160

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms HAS160

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 179

Chapter 4: Supported Mechanisms

CKM_KCDSA_HAS160_NO_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms HAS160

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 180

Chapter 4: Supported Mechanisms

CKM_KCDSA_KEY_PAIR_GEN

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types KCDSA

Algorithms None

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 181

Chapter 4: Supported Mechanisms

CKM_KCDSA_PARAMETER_GEN

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types KCDSA

Algorithms None

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 182

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA1

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms SHA

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 183

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA1_NO_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 20

Key types KCDSA

Algorithms SHA

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 184

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA224

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 28

Key types KCDSA

Algorithms SHA224

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 185

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA224_NO_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 28

Key types KCDSA

Algorithms SHA224

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 186

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA256

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 32

Key types KCDSA

Algorithms SHA256

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 187

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA256_NO_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 64

Digest size 32

Key types KCDSA

Algorithms SHA256

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 188

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA384

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size 48

Key types KCDSA

Algorithms SHA384

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 189

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA384_NO_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size 48

Key types KCDSA

Algorithms SHA384

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 190

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA512

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size *

Key types KCDSA

Algorithms SHA512

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 191

Chapter 4: Supported Mechanisms

CKM_KCDSA_SHA512_NO_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 128

Digest size *

Key types KCDSA

Algorithms SHA512

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 192

Chapter 4: Supported Mechanisms

CKM_KEY_WRAP_SET_OAEP

Summary

FIPS approved? No

Supported functions Wrap | Unwrap

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 193

Chapter 4: Supported Mechanisms

CKM_MD2

Summary

FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 16

Digest size 16

Key types None

Algorithms MD2

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 194

Chapter 4: Supported Mechanisms

CKM_MD2_KEY_DERIVATION

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 16

Digest size 16

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 195

Chapter 4: Supported Mechanisms

CKM_MD5_HMAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 16

Key types Symmetric

Algorithms MD5

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 196

Chapter 4: Supported Mechanisms

CKM_MD5_HMAC_GENERAL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 16

Key types Symmetric

Algorithms MD5

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 197

Chapter 4: Supported Mechanisms

CKM_MD5_KEY_DERIVATION

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 16

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 198

Chapter 4: Supported Mechanisms

CKM_NIST_PRF_KDF

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 112

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
The CKM_NIST_PRF_KDF mechanism only supports counter mode. CKM_NIST_PRF_KDF is always
allowed, whether HSM policy 12: Allow Non-FIPS algorithms is on or off. This mechanism can be used
with the following mechanisms as the pseudorandom function:

> AES_CMAC

> DES3_CMAC

> HMAC_SHA1

> HMAC_SHA224

> HMAC_SHA256

> HMAC_SHA384

> HMAC_SHA512

NIST SP 800-108 allows for some variation on what/how information is encoded and describes some fields as
optional. To accommodate this, there are multiple encoding schemes you can specify, with variations on what
information is included and what order the fields are arranged in. All counters and lengths are represented in
big endian format. The following schemes are available:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 199

Chapter 4: Supported Mechanisms

> LUNA_PRF_KDF_ENCODING_SCHEME_1: the Counter (4 bytes),Context, Separator byte, Label,
and Length (4 bytes) fields are included.

> LUNA_PRF_KDF_ENCODING_SCHEME_2: the Counter (4 bytes),Context and Label fields are
included.

> LUNA_PRF_KDF_ENCODING_SCHEME_3: the Counter (4 bytes), Label, Separator byte,Context,
and Length (4 bytes) fields are included.

> LUNA_PRF_KDF_ENCODING_SCHEME_4: the Counter (4 bytes), Label and Context fields are
included.

> LUNA_PRF_KDF_ENCODING_SCHEME_SCP03: the Label, Separator byte, Length (2 bytes),
Counter, and Context fields are included.

> LUNA_PRF_KDF_ENCODING_SCHEME_HID_KD: the Counter, Label, Separator byte,Context, and
Length (2 bytes) fields are included.

Example
/* Parameter and values used with CKM_PRF_KDF and CKM_NIST_PRF_KDF. */
typedef CK_ULONG CK_KDF_PRF_TYPE;
typedef CK_ULONG CK_KDF_PRF_ENCODING_SCHEME;
/** PRF KDF schemes */
#define CK_NIST_PRF_KDF_DES3_CMAC 0x00000001
#define CK_NIST_PRF_KDF_AES_CMAC 0x00000002
#define CK_PRF_KDF_ARIA_CMAC 0x00000003
#define CK_PRF_KDF_SEED_CMAC 0x00000004
#define CK_NIST_PRF_KDF_HMAC_SHA1 0x00000005
#define CK_NIST_PRF_KDF_HMAC_SHA224 0x00000006
#define CK_NIST_PRF_KDF_HMAC_SHA256 0x00000007
#define CK_NIST_PRF_KDF_HMAC_SHA384 0x00000008
#define CK_NIST_PRF_KDF_HMAC_SHA512 0x00000009
#define CK_PRF_KDF_HMAC_RIPEMD160 0x0000000A
#define LUNA_PRF_KDF_ENCODING_SCHEME_1 0x00000000 // Counter (4 bytes) || Context || 0x00 ||
Label || Length
#define LUNA_PRF_KDF_ENCODING_SCHEME_2 0x00000001 // Counter (4 bytes) || Context || Label
#define LUNA_PRF_KDF_ENCODING_SCHEME_3 0x00000002 // Counter (4 bytes) || Label || 0x00 ||
Context || Length
#define LUNA_PRF_KDF_ENCODING_SCHEME_4 0x00000003 // Counter (4 bytes) || Label || Context
#define LUNA_PRF_KDF_ENCODING_SCHEME_SCP03 0x00000004 // Label || 0x00 || Length (2 bytes) ||
Counter (1 byte) || Context
#define LUNA_PRF_KDF_ENCODING_SCHEME_HID_KD 0x00000005 // Counter (1 byte) || Label || 0x00 ||
Context || Length (2 bytes)
typedef struct CK_KDF_PRF_PARAMS {
CK_KDF_PRF_TYPE prfType;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pContext;
CK_ULONG ulContextLen;
CK_ULONG ulCounter;
CK_KDF_PRF_ENCODING_SCHEME ulEncodingScheme;
} CK_PRF_KDF_PARAMS;
typedef CK_PRF_KDF_PARAMS CK_PTR CK_KDF_PRF_PARAMS_PTR;

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 200

Chapter 4: Supported Mechanisms

CKM_PBE_MD2_DES_CBC

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 64

Block size 16

Digest size 16

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 201

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_CAST5_CBC

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 202

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_DES2_EDE_CBC

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 203

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_DES2_EDE_CBC_OLD

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 204

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_DES3_EDE_CBC

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 192

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 205

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_DES3_EDE_CBC_OLD

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 192

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 192

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 206

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_RC2_40_CBC

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 40

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 40

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 207

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_RC2_128_CBC

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 208

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_RC4_40

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 40

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 40

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 209

Chapter 4: Supported Mechanisms

CKM_PBE_SHA1_RC4_128

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 20

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 210

Chapter 4: Supported Mechanisms

CKM_PKCS5_PBKD2

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 211

Chapter 4: Supported Mechanisms

CKM_PRF_KDF

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

Usage
The CKM_NIST_PRF mechanism only supports counter mode. CKM_PRF_KDF is only available with HSM
policy 12: Allow Non-FIPS algorithms turned on. This mechanism can be used with the following
mechanisms as the pseudorandom function:

> ARIA_CMAC

> HMAC_RIPEMD160

> SEED_CMAC

NIST SP 800-108 allows for some variation on what/how information is encoded and describes some fields as
optional. To accommodate this, there are multiple encoding schemes you can specify, with variations on what
information is included and what order the fields are arranged in. All counters and lengths are represented in
big endian format. The following schemes are available:

> LUNA_PRF_KDF_ENCODING_SCHEME_1: the Counter (4 bytes),Context, Separator byte, Label,
and Length (4 bytes) fields are included.

> LUNA_PRF_KDF_ENCODING_SCHEME_2: the Counter (4 bytes),Context and Label fields are
included.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 212

Chapter 4: Supported Mechanisms

> LUNA_PRF_KDF_ENCODING_SCHEME_3: the Counter (4 bytes), Label, Separator byte,Context,
and Length (4 bytes) fields are included.

> LUNA_PRF_KDF_ENCODING_SCHEME_4: the Counter (4 bytes), Label and Context fields are
included.

> LUNA_PRF_KDF_ENCODING_SCHEME_SCP03: the Label, Separator byte, Length (2 bytes),
Counter, and Context fields are included.

> LUNA_PRF_KDF_ENCODING_SCHEME_HID_KD: the Counter, Label, Separator byte,Context, and
Length (2 bytes) fields are included.

Example
/* Parameter and values used with CKM_PRF_KDF and CKM_NIST_PRF_KDF. */
typedef CK_ULONG CK_KDF_PRF_TYPE;
typedef CK_ULONG CK_KDF_PRF_ENCODING_SCHEME;
/** PRF KDF schemes */
#define CK_NIST_PRF_KDF_DES3_CMAC 0x00000001
#define CK_NIST_PRF_KDF_AES_CMAC 0x00000002
#define CK_PRF_KDF_ARIA_CMAC 0x00000003
#define CK_PRF_KDF_SEED_CMAC 0x00000004
#define CK_NIST_PRF_KDF_HMAC_SHA1 0x00000005
#define CK_NIST_PRF_KDF_HMAC_SHA224 0x00000006
#define CK_NIST_PRF_KDF_HMAC_SHA256 0x00000007
#define CK_NIST_PRF_KDF_HMAC_SHA384 0x00000008
#define CK_NIST_PRF_KDF_HMAC_SHA512 0x00000009
#define CK_PRF_KDF_HMAC_RIPEMD160 0x0000000A
#define LUNA_PRF_KDF_ENCODING_SCHEME_1 0x00000000 // Counter (4 bytes) || Context || 0x00 ||
Label || Length
#define LUNA_PRF_KDF_ENCODING_SCHEME_2 0x00000001 // Counter (4 bytes) || Context || Label
#define LUNA_PRF_KDF_ENCODING_SCHEME_3 0x00000002 // Counter (4 bytes) || Label || 0x00 ||
Context || Length
#define LUNA_PRF_KDF_ENCODING_SCHEME_4 0x00000003 // Counter (4 bytes) || Label || Context
#define LUNA_PRF_KDF_ENCODING_SCHEME_SCP03 0x00000004 // Label || 0x00 || Length (2 bytes) ||
Counter (1 byte) || Context
#define LUNA_PRF_KDF_ENCODING_SCHEME_HID_KD 0x00000005 // Counter (1 byte) || Label || 0x00 ||
Context || Length (2 bytes)
typedef struct CK_KDF_PRF_PARAMS {
CK_KDF_PRF_TYPE prfType;
CK_BYTE_PTR pLabel;
CK_ULONG ulLabelLen;
CK_BYTE_PTR pContext;
CK_ULONG ulContextLen;
CK_ULONG ulCounter;
CK_KDF_PRF_ENCODING_SCHEME ulEncodingScheme;
} CK_PRF_KDF_PARAMS;
typedef CK_PRF_KDF_PARAMS CK_PTR CK_KDF_PRF_PARAMS_PTR;

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 213

Chapter 4: Supported Mechanisms

CKM_RC2_CBC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 214

Chapter 4: Supported Mechanisms

CKM_RC2_CBC_PAD

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 215

Chapter 4: Supported Mechanisms

CKM_RC2_ECB

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 216

Chapter 4: Supported Mechanisms

CKM_RC2_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 0

Digest size 0

Key types RC2

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 217

Chapter 4: Supported Mechanisms

CKM_RC2_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 218

Chapter 4: Supported Mechanisms

CKM_RC2_MAC_GENERAL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 1024

Block size 8

Digest size 0

Key types RC2

Algorithms RC2

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 219

Chapter 4: Supported Mechanisms

CKM_RC4

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types RC4

Algorithms RC4

Modes STREAM

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 220

Chapter 4: Supported Mechanisms

CKM_RC4_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2048

Block size 0

Digest size 0

Key types RC4

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 221

Chapter 4: Supported Mechanisms

CKM_RC5_CBC

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes CBC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 222

Chapter 4: Supported Mechanisms

CKM_RC5_CBC_PAD

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes CBC_PAD

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 223

Chapter 4: Supported Mechanisms

CKM_RC5_ECB

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes ECB

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 224

Chapter 4: Supported Mechanisms

CKM_RC5_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 0

Digest size 0

Key types RC5

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 225

Chapter 4: Supported Mechanisms

CKM_RC5_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 226

Chapter 4: Supported Mechanisms

CKM_RC5_MAC_GENERAL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 64

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 2040

Block size 8

Digest size 0

Key types RC5

Algorithms RC5

Modes MAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 227

Chapter 4: Supported Mechanisms

CKM_RSA_FIPS_186_3_AUX_PRIME_KEY_PAIR_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 228

Chapter 4: Supported Mechanisms

CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 2048

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 2048

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 229

Chapter 4: Supported Mechanisms

CKM_RSA_PKCS

Summary

FIPS approved? Yes

Supported functions Sign | Verify | Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 230

Chapter 4: Supported Mechanisms

CKM_RSA_PKCS_KEY_PAIR_GEN

Summary

FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 231

Chapter 4: Supported Mechanisms

CKM_RSA_PKCS_OAEP
The RSAPKCSOAEPmechanism can now use a supplied hashing mechanism. Previously RSAOAEPwould
always use SHA1 and returned an error if another was attempted.

With current firmware, PKCS#11 API and ckdemo now accept a newmechanism.

Allowed mechanisms are:

CKM_SHA1

CKM_SHA224

CKM_SHA256

CKM_SHA384

CKM_SHA512

0 (use the firmware's default engine, which is currently SHA1)

In ckdemo menu option 98 has a new value 17 - OAEPHash Params, which can be set to use either default
(CKM_SHA1) or selectable. When it is set to selectable the user is prompted for a hash mechanism when using
the OAEPmechanism.

Summary

FIPS approved? Yes

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 232

Chapter 4: Supported Mechanisms

CKM_RSA_PKCS_PSS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None | PSS

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 233

Chapter 4: Supported Mechanisms

CKM_RSA_X_509

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 234

Chapter 4: Supported Mechanisms

CKM_RSA_X9_31

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags Extractable | X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 235

Chapter 4: Supported Mechanisms

CKM_RSA_X9_31_KEY_PAIR_GEN

Summary

FIPS approved? No

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 236

Chapter 4: Supported Mechanisms

CKM_RSA_X9_31_NON_FIPS

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 0

Digest size 0

Key types RSA

Algorithms None

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 237

Chapter 4: Supported Mechanisms

CKM_SEED_CBC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes CBC

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 238

Chapter 4: Supported Mechanisms

CKM_SEED_CBC_PAD

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes CBC_PAD

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 239

Chapter 4: Supported Mechanisms

CKM_SEED_CMAC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes MAC

Flags Extractable | Korean | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 240

Chapter 4: Supported Mechanisms

CKM_SEED_CMAC_GENERAL

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes MAC

Flags Extractable | Korean | CMAC

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 241

Chapter 4: Supported Mechanisms

CKM_SEED_CTR

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes CTR

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 242

Chapter 4: Supported Mechanisms

CKM_SEED_ECB

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt | Wrap | Unwrap

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes ECB

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 243

Chapter 4: Supported Mechanisms

CKM_SEED_KEY_GEN

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 0

Digest size 0

Key types SEED

Algorithms None

Modes None

Flags Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 244

Chapter 4: Supported Mechanisms

CKM_SEED_MAC

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes MAC

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 245

Chapter 4: Supported Mechanisms

CKM_SEED_MAC_GENERAL

NOTE The SEED and ARIA and KCDSAmechanisms are available on your HSM if Korean
Algorithms are enabled.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 16

Digest size 0

Key types SEED

Algorithms SEED

Modes MAC

Flags Extractable | Korean

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 246

Chapter 4: Supported Mechanisms

CKM_SHA_1

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 0

Maximum key length (bits) 0

Block size 64

Digest size 20

Key types None

Algorithms SHA

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 247

Chapter 4: Supported Mechanisms

CKM_SHA_1_HMAC

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms SHA

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 248

Chapter 4: Supported Mechanisms

CKM_SHA_1_HMAC_GENERAL

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms SHA

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 249

Chapter 4: Supported Mechanisms

CKM_SHA1_EDDSA

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 20

Key types EDDSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 250

Chapter 4: Supported Mechanisms

CKM_SHA1_EDDSA_NACL

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 20

Key types EDDSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 251

Chapter 4: Supported Mechanisms

CKM_SHA1_KEY_DERIVATION

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 20

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 252

Chapter 4: Supported Mechanisms

CKM_SHA1_RSA_PKCS

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 253

Chapter 4: Supported Mechanisms

CKM_SHA1_RSA_PKCS_PSS

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable | PSS

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 254

Chapter 4: Supported Mechanisms

CKM_SHA1_RSA_X9_31

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable | X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 255

Chapter 4: Supported Mechanisms

CKM_SHA1_RSA_X9_31_NON_FIPS

NOTE The flags MPE_NO_SIGN and MPE_NO_WRAP are assigned to the SHA1
mechanisms. When the HSM policy “Allow NonFIPSAlgorithms” is disabled, mechanisms with
the MPE_NO_SIGN flag are not allowed to sign data, and mechanisms with the MPE_NO_
WRAP flag are not allowed to wrap objects. When the policy is enabled, these mechanisms
are allowed to sign data and wrap objects respectively.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 20

Key types RSA

Algorithms SHA

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 256

Chapter 4: Supported Mechanisms

CKM_SHA224

Summary

FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 0

Maximum key length (bits) 0

Block size 64

Digest size 28

Key types None

Algorithms SHA224

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 257

Chapter 4: Supported Mechanisms

CKM_SHA224_EDDSA

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 28

Key types EDDSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 258

Chapter 4: Supported Mechanisms

CKM_SHA224_EDDSA_NACL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 28

Key types EDDSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 259

Chapter 4: Supported Mechanisms

CKM_SHA224_HMAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 28

Key types Symmetric

Algorithms SHA224

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 260

Chapter 4: Supported Mechanisms

CKM_SHA224_HMAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 28

Key types Symmetric

Algorithms SHA224

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 261

Chapter 4: Supported Mechanisms

CKM_SHA224_KEY_DERIVATION

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 28

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 262

Chapter 4: Supported Mechanisms

CKM_SHA224_RSA_PKCS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 263

Chapter 4: Supported Mechanisms

CKM_SHA224_RSA_PKCS_PSS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable | PSS

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 264

Chapter 4: Supported Mechanisms

CKM_SHA224_RSA_X9_31

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable | X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 265

Chapter 4: Supported Mechanisms

CKM_SHA224_RSA_X9_31_NON_FIPS

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 28

Key types RSA

Algorithms SHA224

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 266

Chapter 4: Supported Mechanisms

CKM_SHA256

Summary

FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 0

Maximum key length (bits) 0

Block size 64

Digest size 32

Key types None

Algorithms SHA256

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 267

Chapter 4: Supported Mechanisms

CKM_SHA256_EDDSA

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 64

Digest size 32

Key types EDDSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 268

Chapter 4: Supported Mechanisms

CKM_SHA256_EDDSA_NACL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 128

Digest size 48

Key types EDDSA

Algorithms SHA384

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 269

Chapter 4: Supported Mechanisms

CKM_SHA256_HMAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms SHA256

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 270

Chapter 4: Supported Mechanisms

CKM_SHA256_HMAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms SHA256

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 271

Chapter 4: Supported Mechanisms

CKM_SHA256_KEY_DERIVATION

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 272

Chapter 4: Supported Mechanisms

CKM_SHA256_RSA_PKCS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 273

Chapter 4: Supported Mechanisms

CKM_SHA256_RSA_PKCS_PSS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable | PSS

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 274

Chapter 4: Supported Mechanisms

CKM_SHA256_RSA_X9_31

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable | X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 275

Chapter 4: Supported Mechanisms

CKM_SHA256_RSA_X9_31_NON_FIPS

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 64

Digest size 32

Key types RSA

Algorithms SHA256

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 276

Chapter 4: Supported Mechanisms

CKM_SHA384

Summary

FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 0

Maximum key length (bits) 0

Block size 128

Digest size 48

Key types None

Algorithms SHA384

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 277

Chapter 4: Supported Mechanisms

CKM_SHA384_EDDSA

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 128

Digest size 48

Key types EDDSA

Algorithms SHA384

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 278

Chapter 4: Supported Mechanisms

CKM_SHA384_EDDSA_NACL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 128

Digest size 48

Key types EDDSA

Algorithms SHA384

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 279

Chapter 4: Supported Mechanisms

CKM_SHA384_HMAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 128

Digest size 48

Key types Symmetric

Algorithms SHA384

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 280

Chapter 4: Supported Mechanisms

CKM_SHA384_HMAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 128

Digest size 48

Key types Symmetric

Algorithms SHA384

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 281

Chapter 4: Supported Mechanisms

CKM_SHA384_KEY_DERIVATION

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 128

Digest size 48

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 282

Chapter 4: Supported Mechanisms

CKM_SHA384_RSA_PKCS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 283

Chapter 4: Supported Mechanisms

CKM_SHA384_RSA_PKCS_PSS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 512

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable | PSS

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 284

Chapter 4: Supported Mechanisms

CKM_SHA384_RSA_X9_31

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable | X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 285

Chapter 4: Supported Mechanisms

CKM_SHA384_RSA_X9_31_NON_FIPS

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 128

Digest size 48

Key types RSA

Algorithms SHA384

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 286

Chapter 4: Supported Mechanisms

CKM_SHA512

Summary

FIPS approved? Yes

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 0

Maximum key length (bits) 0

Block size 128

Digest size *

Key types None

Algorithms SHA512

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 287

Chapter 4: Supported Mechanisms

CKM_SHA512_EDDSA

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 128

Digest size *

Key types EDDSA

Algorithms SHA512

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 288

Chapter 4: Supported Mechanisms

CKM_SHA512_EDDSA_NACL

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 256

Block size 128

Digest size *

Key types EDDSA

Algorithms SHA512

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 289

Chapter 4: Supported Mechanisms

CKM_SHA512_HMAC

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 128

Digest size *

Key types Symmetric

Algorithms SHA512

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 290

Chapter 4: Supported Mechanisms

CKM_SHA512_HMAC_GENERAL

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) 112

Minimum legacy key length for FIPS use (bits) 80

Maximum key length (bits) 4096

Block size 128

Digest size *

Key types Symmetric

Algorithms SHA512

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 291

Chapter 4: Supported Mechanisms

CKM_SHA512_KEY_DERIVATION

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 128

Digest size *

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 292

Chapter 4: Supported Mechanisms

CKM_SHA512_RSA_PKCS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 256

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size *

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 293

Chapter 4: Supported Mechanisms

CKM_SHA512_RSA_PKCS_PSS

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size *

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable | PSS

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 294

Chapter 4: Supported Mechanisms

CKM_SHA512_RSA_X9_31

Summary

FIPS approved? Yes

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) 2048

Minimum legacy key length for FIPS use (bits) 1024

Maximum key length (bits) 8192

Block size 128

Digest size *

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable | X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 295

Chapter 4: Supported Mechanisms

CKM_SHA512_RSA_X9_31_NON_FIPS

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 8192

Block size 128

Digest size *

Key types RSA

Algorithms SHA512

Modes None

Flags Extractable | X9.31 | Non-FIPS X9.31

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 296

Chapter 4: Supported Mechanisms

CKM_SM3
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash
function, but introduces additional strengthening features. For SafeNet Luna Network HSMs, the available
mechanisms are CKM_SM3, the hash function, and CKM_SM3_KEY_DERIVATION, and CKM_HMAC_SM3.

Summary

FIPS approved? No

Supported functions Digest

Minimum key length (bits) 0

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 0

Block size 64

Digest size 32

Key types None

Algorithms SM3

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 297

Chapter 4: Supported Mechanisms

CKM_SM3_HMAC
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash
function, but introduces additional strengthening features. For SafeNet Luna Network HSMs, the available
mechanisms are CKM_SM3, the hash function, and CKM_SM3_KEY_DERIVATION, and CKM_SM3_HMAC.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms SM3

Modes HMAC

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 298

Chapter 4: Supported Mechanisms

CKM_SM3_HMAC_GENERAL
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash
function, but introduces additional strengthening features. For SafeNet Luna Network HSMs, the available
mechanisms are CKM_SM3, the hash function, and CKM_SM3_KEY_DERIVATION, and CKM_SM3_HMAC.

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms SM3

Modes HMAC

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 299

Chapter 4: Supported Mechanisms

CKM_SM3_KEY_DERIVATION
SM3 is a hash function published by the Chinese Commercial Cryptography Administration Office for the use of
electronic authentication service system. The design of SM3 builds upon the design of the SHA-2 hash
function, but introduces additional strengthening features. For SafeNet Luna Network HSMs, the available
mechanisms are CKM_SM3, the hash function, and CKM_SM3_KEY_DERIVATION, and CKM_HMAC_SM3.

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 64

Digest size 32

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 300

Chapter 4: Supported Mechanisms

CKM_SSL3_KEY_AND_MAC_DERIVE

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 384

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 384

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 301

Chapter 4: Supported Mechanisms

CKM_SSL3_MASTER_KEY_DERIVE

Summary

FIPS approved? No

Supported functions Derive

Minimum key length (bits) 384

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 384

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 302

Chapter 4: Supported Mechanisms

CKM_SSL3_MD5_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 128

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 128

Block size 64

Digest size 16

Key types Symmetric

Algorithms MD5

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 303

Chapter 4: Supported Mechanisms

CKM_SSL3_PRE_MASTER_KEY_GEN

Summary

FIPS approved? No

Supported functions Generate Key

Minimum key length (bits) 384

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 384

Block size 0

Digest size 0

Key types None

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 304

Chapter 4: Supported Mechanisms

CKM_SSL3_SHA1_MAC

Summary

FIPS approved? No

Supported functions Sign | Verify

Minimum key length (bits) 160

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 160

Block size 64

Digest size 20

Key types Symmetric

Algorithms SHA

Modes HMAC

Flags Extractable

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 305

Chapter 4: Supported Mechanisms

CKM_X9_42_DH_DERIVE

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 2048

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 306

Chapter 4: Supported Mechanisms

CKM_X9_42_DH_HYBRID_DERIVE

Summary

FIPS approved? Yes

Supported functions Derive

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 2048

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 307

Chapter 4: Supported Mechanisms

CKM_X9_42_DH_KEY_PAIR_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key Pair

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 2048

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 308

Chapter 4: Supported Mechanisms

CKM_X9_42_DH_PARAMETER_GEN

Summary

FIPS approved? Yes

Supported functions Generate Key

Minimum key length (bits) 1024

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) 2048

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types X9_42_DH

Algorithms None

Modes None

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 309

Chapter 4: Supported Mechanisms

CKM_XOR_BASE_AND_DATA_W_KDF

Summary

FIPS approved? No

Supported functions Encrypt | Decrypt

Minimum key length (bits) 8

Minimum key length for FIPS use (bits) N/A

Minimum legacy key length for FIPS use (bits) N/A

Maximum key length (bits) 4096

Block size 0

Digest size 0

Key types Symmetric

Algorithms None

Modes OFB

Flags None

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 310

CHAPTER 5: Using the SafeNet SDK

This chapter describes how to use the SDK to develop applications that exercise the HSM. It contains the
following topics:

> "Libraries and Applications" below

> "Application IDs" on page 315

> "NamedCurves and User-Defined Parameters" on page 319

> "Supported ECC Curves" on page 326

> "Capability and Policy Configuration Control Using the SafeNet API" on page 329

> "Connection Timeout" on page 333

Libraries and Applications
This section explains how to make the Chrystoki library available to the other components of the SafeNet
Software Development Kit.

An application has no knowledge of which library is to be loaded nor does the application know the library's
location. For these reasons, a special scheme must be employed to tell the application, while it is running,
where to find the library. The next paragraphs describe how applications connect to Chrystoki.

SafeNet SDKApplications General Information
All applications provided in SafeNet Luna Network HSM Software Development Kit have been compiled with a
component called CkBridge, which uses a configuration file to find the library it is intended to load. Ckbridge
first uses the environment variable "ChrystokiConfigurationPath" to locate the corresponding configuration file.
If this environment variable is not set, it attempts to locate the configuration file in a default location depending
on the product platform (/etc on Unix, and c:\Program Files\SafeNet\LunaClient on Windows).

Configuration files differ from one platform to the next - refer to the appropriate sub-section for the operating
system and syntax applicable to your development platform.

Windows
In Windows, an initialization file called crystoki.ini specifies which library is to be loaded. The syntax of this file
is standard to Windows.

The following example shows proper configuration files for Windows:
[Chrystoki2]
LibNT=C:\Program Files\SafeNet\LunaClient\cryptoki.dll
[LunaSA Client]
SSLConfigFile=C:\Program Files\SafeNet\LunaClient\openssl.cnf
ReceiveTimeout=20000
NetClient=1
ServerCAFile=C:\Program Files\SafeNet\LunaClient\cert\server\CAFile.pem
ClientCertFile=C:\Program Files\SafeNet\LunaClient\cert\client\ClientNameCert.pem

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 311

Chapter 5: Using the SafeNet SDK

ClientPrivKeyFile=C:\Program Files\SafeNet\LunaClient\cert\client\ClientNameKey.pem
[Luna]
DefaultTimeOut=500000
PEDTimeout1=100000
PEDTimeout2=200000
PEDTimeout3=10000
[CardReader]
RemoteCommand=1

CAUTION! Never insert TAB characters into the crystoki.ini (Windows) or chrystoki.conf
(UNIX) file.

UNIX
In UNIX, a configuration file called "Chrystoki.conf" is used to guide CkBridge in finding the appropriate library.

The configuration file is a regular text file with a special format. It is made up of a number of sections, each
section containing one or multiple entries. The following example shows a typical UNIX configuration file:
Chrystoki2 =
{
LibUNIX=/usr/lib/libCryptoki2.so;
}
Luna = {
DefaultTimeOut=500000;
PEDTimeout1=100000;
PEDTimeout2=200000;
PEDTimeout3=10000;
KeypairGenTimeOut=2700000;
CloningCommandTimeOut=300000;
}
CardReader = {
RemoteCommand=1;
}
LunaSA Client = {
NetClient = 1;
ServerCAFile = /usr/safenet/lunaclient/cert/server/CAFile.pem;
ClientCertFile = /usr/safenet/lunaclient/cert/client/ClientNameCert.pem;
ClientPrivKeyFile = /usr/safenet/lunaclient/cert/client/ClientNameKey.pem;
SSLConfigFile = /usr/safenet/lunaclient/bin/openssl.cnf;
ReceiveTimeout = 20000;
}
The shared object "libcrystoki2.so" is a library supporting version 2.2.0 of the PKCS#11 standard.

CAUTION! Never insert TAB characters into the crystoki.ini (Windows) or crystoki.conf
(UNIX) file.

Compiler Tools
Tools used for SafeNet development are platform specific tools/development environments, where applicable
(e.g., Visual C++ on Windows, or Workshop on Solaris). Current version information is provided in the
Customer Release Notes.

NOTE Contact SafeNet for information about the availability of newer versions of compilers.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 312

Chapter 5: Using the SafeNet SDK

Using CKlog
SafeNet Software Development Kit provides a facility which can record all interactions between an application
and the PKCS#11-compliant library. It allows a developer to debug an application by viewing what the library
receives.

This tool is known as the Cryptoki Logging Facility or cklog. Cklog is a shim library that an application accesses
when seeking our PKCS#11 library. When cklog receives a call it does not service the request. Instead, it logs
the call to a file and passes the request to the originally intended library.

To configure CkLog:

Perform these steps:

1. Direct the application to use the cklog library instead of the regular Chrystoki library. Do this by modifying
the configuration file to instruct CkBridge to load the Cklog library.

Windows
[Chrystoki2]
LibNT=c:\Program Files\SafeNet\LunaClient\cklog201.dll

Linux/UNIX
Chrystoki2 =
{
LibUNIX=/usr/lib/libcklog2.so;

2. Instruct the cklog library where to access the regular cryptoki library.

Windows
[CkLog2]
LibNT=c:\Program Files\SafeNet\LunaClient\cryptoki.dll

Linux/UNIX
CkLog2 =
{
LibUNIX=/usr/lib/libCryptoki2.so;
}

3. Add appropriate entries to the CkLog2 section for the desired level of operation. See the examples and
explanations of entries, below.

Windows Example
The following example shows a typical initialization file under Windows where cklog is in use:
[Chrystoki2]
LibNT=c:\Program Files\SafeNet\LunaClient\cklog201.dll
[CkLog2]
LibNT=c:\Program Files\SafeNet\LunaClient\cryptoki.dll
Enabled=1
File=c:\Program Files\SafeNet\LunaClient\cklog2.txt
Error=c:\Program Files\SafeNet\LunaClient\error2.txt
NewFormat=1
LoggingMask=ALL_FUNC

UNIX Example
The following example shows a typical configuration file under UNIXwhere cklog is in use:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 313

Chapter 5: Using the SafeNet SDK

Chrystoki2 =
{
LibUNIX=/usr/lib/libcklog2.so;
}
CkLog2 =
{
LibUNIX=/usr/lib/libCryptoki2.so;
Enabled=1;
File=/tmp/cklog.txt;
Error=/tmp/error.txt;
NewFormat=1;
LoggingMask=ALL_FUNC;
}
Here are descriptions of entries that might be applicable:

> LibNT - references to a Cryptoki library for Windows.

> LibUNIX - references to a Cryptoki library for UNIX (meaning Solaris, Linux, and AIX).

> Enabled - 0 or 1. Allows turning the logging facility off or on.

> File - references the file to which the requests should be logged.

> Error - references a file where the logging facility can record fatal errors.

> NewFormat - 0 or 1 disables/enables a more compact output format, which is the format preferred by
SafeNet Customer Support

Selective Logging
When logging is turned on, all functions are logged, by default. If you wish to restrict logging to particular
functions of interest only, you can edit the “LoggingMask=” parameter in the crystoki.ini [Windows] or
Chrystoki.conf [UNIX] file to include flags for the desired logging.

LoggingMask= Flags
Here is the list of possible flags for cklog:

Flag Description

GEN_FUNCS General functions

SLOT_TOKEN_FUNC Slot/Token related functions

SESSION_FUNC Session related functions

OBJ_MNGMNT_FUNC Object Management functions

ENC_DEC_FUNC Encrypt/Decrypt related functions

DIGEST_FUNC Digest Related functions

SIGN_VERIFY_FUNC Signing/Verifying related functions

KEY_MNGMNT_FUNC Key Management related functions

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 314

Chapter 5: Using the SafeNet SDK

Flag Description

MISC_FUNC Misc functions

CHRYSALIS_FUNC SafeNet Extensions functions

ALL_FUNC All functions logged;

You can mix and match any or all of the flags, using the “|” operator. For example, the following:

LoggingMask=GEN_FUNC | SLOT_TOKEN_FUNC | ENC_DEC_FUNC | SIGN_VERIFY_FUNC;

would be valid.

NOTE You can use the flags in any order. Using the ALL_FUNC flag overrides any other
flag.
If you have the “LoggingMask=” parameter, with NO flags set, then nothing is logged. If
logging capability is enabled (cklog), but there is no “LoggingMask=” line, then default
behavior prevails and everything is logged.

Application IDs
Within Chrystoki, each application has an application ID, a 64-bit integer, normally specified in two 32-bit parts.
When an application invokesC_Initialize, the Chrystoki library automatically generates a default application
ID. The default value is based on the application's process ID, so different applications will always have
different application IDs. The application ID is also associated with each session created by the application.

Shared Login State and Application IDs
PKCS#11 specifies that sessions within an application (a single address space and all threads that execute
within it) share a login state, meaning that if one session is logged in, all are logged in. If one logs out, all are
logged out. Thus, if process A spawns multiple threads, and all of those threads open sessions on Token #1,
then all of those sessions share a login state. If process B also has sessions open on Token #1, they are
independent from the sessions of process A. The login state of process B sessions does not affect process A
sessions, unless they conflict with one another (e.g. process A logs in as USERwhen process B is already
logged in as SO).

Within Chrystoki and SafeNet tokens, login states are shared by sessions with the same application ID. This
means that sessions within an application share a login state, but sessions across separate applications do
not. However, Chrystoki does provides functionality allowing applications to alter their application IDs, so that
separate applications can share a login state.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 315

Chapter 5: Using the SafeNet SDK

CAUTION! The ability to share login states through the use of application IDs is a legacy
feature. It can eliminate the need for repeated PED authentication across multiple
applications, but this is not ideal for security reasons. To avoid these risks, it is recommended
to use auto-activation in conjunction with a PED challenge password instead (see "Activation
and Auto-activation on PED-Authenticated Partitions" on page 1 in the Administration
Guide).

To change application IDs manually using the LunaCM appid command, see "appid" on page 1 in the LunaCM
ReferenceGuide.

Why Share Login State Between Applications?
For most applications, this is unnecessary. If an application consists of a single perpetual process, unshared
session states are sufficient. If the application supports multiple, separately-validated processes, unshared
session states are also sufficient. Generally, applications that validate (login) separately are more secure.

It is only necessary to share login state between processes if all of the following conditions are true:

> the application designer wants to require only one login action by the user

> the application consists of multiple processes, each with their own sessions

> the system uses SafeNet CA3 tokens

The SafeNet CA3 token provides FIPS 140-1 level 3 security by using a separate port for password entry
(where PINs take the form of special data keys). Use of these keys prevents an application from caching a
password and using it to log in with multiple sessions. To log in to separate processes simultaneously, login
state between those processes must be shared.

Login State Sharing Overview
The simplest form of the Chrystoki state-sharing functionality is the CA_SetApplicationID function. This
function should be invoked after C_Initialize, but before any sessions are opened. Two separate applications
can use this function to set their application IDs to the same value, and thus allow them to share login states
between their sessions.

Alternatively, set the AppIdMajor and AppIdMinor fields in the Misc section of the Chrystoki configuration file.
This causes default application IDs for all applications to be generated from these fields, rather than from each
application's process ID. When these fields are set, all applications on a host system will share login state
between their sessions, unless individual applications use the CA_SetApplicationID function.

Example

A sample configuration file (crystoki.ini for Windows) using explicit application IDs is duplicated here:
[Chrystoki2]
LibNT=D:\Program Files\SafeNet\LunaClient\cryptoki.dl
[Luna]
DefaultTimeOut=500000
PEDTimeout1=100000
PEDTimeout2=200000
[CardReader]
RemoteCommand=1
[Misc]
AppIdMajor=2
AppIdMinor=4

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 316

Chapter 5: Using the SafeNet SDK

Problems may still arise. When all sessions of a particular application ID are closed, that application ID reverts
to a dormant state. When another session for that application ID is created, the application ID is recreated, but
always in the logged-out state, regardless of the state it was in when it went dormant.

For example, consider an application where a parent process sets its application ID, opens a session, logs the
session in, then closes the session and terminates. Several child processes then set their application IDs, open
sessions and try to use them. However, since the application ID went dormant when the parent process closed
its session, the child processes find their sessions logged out. The logged-in state of the parent process's
session was lost when it closed its session.

The CA_OpenApplicationID function can ensure that the login state of an application ID is maintained, even
when no sessions belonging to that application ID exist. When CA_OpenApplicationID is invoked, the
application ID is tagged so that it never goes dormant, even if no open sessions exist.

NOTE Running CA_OpenApplication_ID does not set the application ID for the current
process. You must first explicitly run CA_SetApplicationID to do this.

Login State Sharing Functions
Use the following functions to configure and manage login state sharing:

CA_SetApplicationID
CK_RV CK_ENTRY CA_SetApplicationID(

CK_ULONG ulHigh,
CK_ULONG ulLow

);

The CA_SetApplicationID function allows an application to set its own application ID, rather than letting the
application ID be generated automatically from the application's process ID.CA_SetApplicationID should be
invoked after C_Initialize, but before any session manipulation functions are invoked. IfCA_
SetApplicationID is invoked after sessions have been opened, results will be unpredictable.

CA_SetApplicationID always returns CKR_OK.

CA_OpenApplicationID
CK_RV CK_ENTRY CA_OpenApplicationID(

CK_SLOT_ID slotID,
CK_ULONG ulHigh,
CK_ULONG ulLow

);

The CA_OpenApplicationID function forces a given application ID on a given token to remain active, even
when all sessions belonging to the application ID have been closed. Normally, an application ID on a token
goes dormant when the last session that belongs to the application ID is closed. When an application ID goes
dormant, login state is lost, so when a new session is created within the application ID, it starts in the logged-out
state. However, ifCA_OpenApplicationID is used, the application ID is prevented from going dormant, so
login state is maintained even when all sessions for an application ID are closed.

NOTE Running CA_OpenApplication_ID does not set the application ID for the current
process. You must first explicitly run CA_SetApplicationID to do this.

CA_OpenApplicationID can return CKR_SLOT_ID_INVALID or CKR_TOKEN_NOT_PRESENT.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 317

Chapter 5: Using the SafeNet SDK

CA_CloseApplicationID
CK_RV CK_ENTRY CA_CloseApplicationID(

CK_SLOT_ID slotID,
CK_ULONG ulHigh,
CK_ULONG ulLow

);

The CA_CloseApplicationID function removes the property of an application ID that prevents it from going
dormant.CA_CloseApplicationID also closes any open sessions owned by the given application ID. Thus,
when CA_CloseApplicationID returns, all open sessions owned by the given application ID have been
closed and the application ID has gone dormant.

CA_CloseApplicationID can return CKR_SLOT_ID_INVALID or CKR_TOKEN_NOT_PRESENT.

Application ID Examples
The following code fragments show how two separate applications might share a single application ID:
app 1: app 2:
C_Initialize()
CA_SetApplicationID(3,4)
C_OpenSession()
C_Login()

C_Initialize()
CA_SetApplicationID(3,4)
C_OpenSession()
C_GetSessionInfo()
// Session info shows session
// already logged in.
<perform work, no login
necessary>

C_Logout()
C_GetSessionInfo()
// Session info shows session
// logged out.

C_CloseSession()
C_CloseSession()

C_Finalize()
C_Finalize()

The following code fragments show how one process might login for others:

Setup app:
C_Initialize()
CA_SetApplicationID(7,9)
CA_OpenApplicationID(slot,7,9)
C_OpenSession(slot)
C_Login()
C_CloseSession()
Spawn many child applications:
C_Finalize()
Terminate each child app:

C_Initialize()
CA_SetApplicationID(7,9)
C_OpenSession(slot)
<perform work, no login necessary>

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 318

Chapter 5: Using the SafeNet SDK

Takedown app:

Terminate child applications:
C_CloseSession()
C_Finalize()

C_Initialize()
CA_CloseApplicationID(slot,7,9)
C_Finalize()

NamedCurves and User-Defined Parameters
SafeNet Luna Network HSM is a PKCS#11-oriented device. The HSM firmware statically defines NIST named
curve OIDs and curve parameters by default. You can also define other non-NIST curve OIDS and parameters
such as Brainpool. SafeNet Luna Network HSM can decode and use the ecParameters structure for key
generation, signing, and verification.

Curve Validation Limitations
The HSM can validate the curve parameters, but domain parameter validation guarantees only the
consistency/sanity of the parameters and the most basic, well-known security properties. The HSM has no way
of judging the quality of a user-specified curve.

It is therefore important that you perform Known Answer Tests to verify the operation of the HSM for any new
Domain Parameter.set. To maintain NIST-FIPS compatibility the feature is selectively enabled with the feature
being disabled by default. Therefore the Administrator must ‘opt-in’ by actively choosing to enable the
appropriate HSM policy. Among other effects, this causes the HSM to display a shell/console message to the
effect that the HSM is not operating in FIPSmode.

Storing Domain Parameters
Under PKCS#11 v2.20, Domain Parameters are stored in object attribute CKA_EC_PARAMS. The value of this
parameter is the DER encoding of an ANSI X9.62 Parameters value.
Parameters ::= CHOICE {
ecParameters ECParameters,
namedCurve CURVES.&id({CurveNames}),
implicitlyCA NULL
}
Because PKCS#11 states that the implicitlyCA is not supported by cryptoki, therefore the CKA_EC_PARAMS
attribute must contain the encoding of an ecParameters or a namedCurve. Cryptoki holds ECC key pairs in
separate Private and Public key objects. Each object has its own CKA_EC_PARAMS attribute which must be
provided when the object is created and cannot be subsequently changed.

Cryptoki also supports CKO_DOMAIN_PARAMETERS objects. These store Domain Parameters but perform
no cryptographic operations. A Domain Parameters object is really only for storage. To generate a key pair,
you must extract the attributes from the Domain Parameters object and insert them in the CKA_EC_PARAMS
attribute of the Public key template. Cryptoki can create new ECC Public and Private key objects and Domain
Parameters objects in the following ways:

> Objects can be directly stored using the C_CreateObject command.

> Public and private key objects can be generated internally with the C_GenerateKeyPair command and the
CKM_EC_KEY_PAIR_GENmechanism.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 319

Chapter 5: Using the SafeNet SDK

> Objects can be imported in encrypted form using C_UnwrapKey command.

Using Domain Parameters
ECC keys may be used for Signature Generation and Verification with the CKM_ECDSA and CKM_ECDSA_
SHA1 mechanism and Encryption and Decryption with the CKM_ECIESmechanism. These three mechanism
are enhanced so that they fetch the Domain Parameters from the CKA_EC_PARAMS attribute for both
ecParameters and namedCurve choice and not just namedCurve choice.

User Friendly Encoder
Using ECCwith Cryptoki to create or generate ECC keys requires that the CKA_EC_PARAMS attribute be
specified. This is a DER encoded binary array. Usually in public documents describing ECC curves the Domain
Parameters are specified as a series of printable strings so the programmer faces the problem of converting
these to the correct format for Cryptoki use.

The cryptoki library is extended to support functions called CA_EncodeECPrimeParams and CA_
EncodeECChar2Params which allow an application to specify the parameter details of a new curve. These
functions implement DER encoders to build the CKA_EC_PARAMS attribute from large integer presentations
of the Domain Parameter values.

Refer to "Sample Domain Parameter Files" on page 322.

Application Interfaces

CA_EncodeECPrimeParams
#include “cryptoki.h”

CK_RV CA_ EncodeECPrimeParams (
CK_BYTE_PTR DerECParams,CK_ULONG_PTR DerECParams Len
CK_BYTE_PTR prime,CK_USHORT primelen,
CK_BYTE_PTR a,CK_USHORT alen,
CK_BYTE_PTR b,CK_USHORT blen,
CK_BYTE_PTR seed,CK_USHORT seedlen,
CK_BYTE_PTR x,CK_USHORT xlen,
CK_BYTE_PTR y,CK_USHORT ylen,
CK_BYTE_PTR order,CK_USHORT orderlen,
CK_BYTE_PTR cofactor,CK_USHORT cofactorlen,

);

Do DER enc of ECC Domain Parameters Prime

Parameters

DerECParams Resultant Encoding (length prediction supported if NULL).

DerECParamsLen Buffer len/Length of resultant encoding

prime Primemodulus

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 320

Chapter 5: Using the SafeNet SDK

primelen Primemodulus len

a Elliptic Curve coefficient a

alen Elliptic Curve coefficient a length

b Elliptic Curve coefficient b

blen Elliptic Curve coefficient b length

seed Seed (optional may be NULL)

seedlen Seed length

x Elliptic Curve point X coord

xlen Elliptic Curve point X coord length

y Elliptic Curve point Y coord

ylen Elliptic Curve point Y coord length

order Order n of the Base Point

orderlen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorlen h length

Return Status of operation. CKR_OK if ok.

CA_EncodeECChar2Params
#include “cryptoki.h”
CK_RV CA_EncodeECChar2Params(
 CK_BYTE_PTR DerECParams, CK_ULONG_PTR DerECParams Len
 CK_USHORT m,
 CK_USHORT k1,
 CK_USHORT k2,
 CK_USHORT k3,
 CK_BYTE_PTR a,CK_USHORT alen,
 CK_BYTE_PTR b,CK_USHORT blen,
 CK_BYTE_PTR seed,CK_USHORT seedlen,
 CK_BYTE_PTR x,CK_USHORT xlen,
 CK_BYTE_PTR y,CK_USHORT ylen,
 CK_BYTE_PTR order,CK_USHORT orderlen,
 CK_BYTE_PTR cofactor,CK_USHORT cofactorlen,
);

Do DER enc of ECC Domain Parameters 2^M

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 321

Chapter 5: Using the SafeNet SDK

Parameters

DerECParams Resultant Encoding (length prediction supported if NULL).

DerECParamsLen Buffer len/Length of resultant encoding

M Degree of field

k1 parameter in trinomial or pentanomial basis polynomial

k2 parameter in pentanomial basis polynomial

k3 parameter in pentanomial basis polynomial

a Elliptic Curve coefficient a

alen Elliptic Curve coefficient a length

b Elliptic Curve coefficient b

blen Elliptic Curve coefficient b length

seed Seed (optional may be NULL)

seedlen Seed length

x Elliptic Curve point X coord

xlen Elliptic Curve point X coord length

y Elliptic Curve point Y coord

ylen Elliptic Curve point Y coord length

order Order n of the Base Point

orderlen Order n of the Base Point length

cofactor The integer h = #E(Fq)/n (optional)

cofactorlen h length

Return Status of operation. CKR_OK if ok.

Sample Domain Parameter Files
The following examples show some sample domain parameter files.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 322

Chapter 5: Using the SafeNet SDK

prime192v1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#
Curve name prime192v1
p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF
a = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC
b = 64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1
s = 3045AE6FC8422F64ED579528D38120EAE12196D5
x = 188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012
y = 07192B95FFC8DA78631011ED6B24CDD573F977A11E794811
q = FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831
h = 1

C2tnB191v1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#
#These are the values common to prime fields and polynomial fields.
#a - field element A

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 323

Chapter 5: Using the SafeNet SDK

#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#
Curve name C2tnB191v1
m = 191
k1 = 9
k2 = 0
k3 = 0
a = 2866537B676752636A68F56554E12640276B649EF7526267
b = 2E45EF571F00786F67B0081B9495A3D95462F5DE0AA185EC
x = 36B3DAF8A23206F9C4F299D7B21A9C369137F2C84AE1AA0D
y = 765BE73433B3F95E332932E70EA245CA2418EA0EF98018FB
q = 40000000000000000000000004A20E90C39067C893BBB9A5

brainpoolP160r1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#
Curve name brainpoolP160r1

p = E95E4A5F737059DC60DFC7AD95B3D8139515620F
a = 340E7BE2A280EB74E2BE61BADA745D97E8F7C300
b = 1E589A8595423412134FAA2DBDEC95C8D8675E58
x = BED5AF16EA3F6A4F62938C4631EB5AF7BDBCDBC3
y = 1667CB477A1A8EC338F94741669C976316DA6321
q = E95E4A5F737059DC60DF5991D45029409E60FC09
h = 1

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 324

Chapter 5: Using the SafeNet SDK

brainpoolP512r1
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal.
#Lines starting with '#' are comments.
#
#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
#
Curve name brainpoolP512r1

p=AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA703308717D4D9B009BC66842AECDA12AE6A380E
62881FF2F2D82C68528AA6056583A48F3

a=7830A3318B603B89E2327145AC234CC594CBDD8D3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B
57F1117A72BF2C7B9E7C1AC4D77FC94CA

b=3DF91610A83441CAEA9863BC2DED5D5AA8253AA10A2EF1C98B9AC8B57F1117A72BF2C7B9E7C1AC4D77FC94CADC083E6
7984050B75EBAE5DD2809BD638016F723

x=81AEE4BDD82ED9645A21322E9C4C6A9385ED9F70B5D916C1B43B62EEF4D0098EFF3B1F78E2D0D48D50D1687B93B97D5
F7C6D5047406A5E688B352209BCB9F822

y=7DDE385D566332ECC0EABFA9CF7822FDF209F70024A57B1AA000C55B881F8111B2DCDE494A5F485E5BCA4BD88A2763A
ED1CA2B2FA8F0540678CD1E0F3AD80892

q=AADD9DB8DBE9C48B3FD4E6AE33C9FC07CB308DB3B3C9D20ED6639CCA70330870553E5C414CA92619418661197FAC104
71DB1D381085DDADDB58796829CA90069
h = 1

Bad Parameter File
#
#This file describes the domain parameters of an EC curve
#
#File contains lines of text. All lines not of the form key=value are ignored.
#All values must be Hexidecimal numbers except m, k, k1, k2 and k3 which are decimal
#Lines starting with '#' are comments.
#

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 325

Chapter 5: Using the SafeNet SDK

#Keys recognised for fieldID values are -
#p - only if the Curve is based on a prime field
#m - only if the curve is based on a 2^M field
#k1, k2, k3 - these three only if 2^M field
#
#You should have these combinations of fieldID values -
#p - if Curve is based on a prime field
#m,k1,k2,k3 - if curve is based on 2^M
#
#These are the values common to prime fields and polynomial fields.
#a - field element A
#b - field element B
#s - this one is optional
#x - field element Xg of the point G
#y - field element Yg of the point G
#q - order n of the point G
#h - (optional) cofactor h
#
Curve name prime192vx

p = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF
a = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC
b = 64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B13
s = 34545567685743523457
x = 188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012
y = 07192B95FFC8DA78631011ED6B24CDD573F977A11E794811
q = FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831
h = 12323435765786

Supported ECCCurves
The following table lists all supported Elliptic Curve Cryptography (ECC) curves and their Object Identifiers
(OID, expressed in dot notation and byte format).

Curve Name(s) OID (dot) OID (byte)

brainpoolP160r1 1.3.36.3.3.2.8.1.1.1 06 09 2B 24 03 03 02 08 01 01 01

brainpoolP160t1 1.3.36.3.3.2.8.1.1.2 06 09 2B 24 03 03 02 08 01 01 02

brainpoolP192r1 1.3.36.3.3.2.8.1.1.3 06 09 2B 24 03 03 02 08 01 01 03

brainpoolP192t1 1.3.36.3.3.2.8.1.1.4 06 09 2B 24 03 03 02 08 01 01 04

brainpoolP224r1 1.3.36.3.3.2.8.1.1.5 06 09 2B 24 03 03 02 08 01 01 05

brainpoolP224t1 1.3.36.3.3.2.8.1.1.6 06 09 2B 24 03 03 02 08 01 01 06

brainpoolP256r1 1.3.36.3.3.2.8.1.1.7 06 09 2B 24 03 03 02 08 01 01 07

brainpoolP256t1 1.3.36.3.3.2.8.1.1.8 06 09 2B 24 03 03 02 08 01 01 08

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 326

Chapter 5: Using the SafeNet SDK

Curve Name(s) OID (dot) OID (byte)

brainpoolP320r1 1.3.36.3.3.2.8.1.1.9 06 09 2B 24 03 03 02 08 01 01 09

brainpoolP320t1 1.3.36.3.3.2.8.1.1.10 06 09 2B 24 03 03 02 08 01 01 0a

brainpoolP384r1 1.3.36.3.3.2.8.1.1.11 06 09 2B 24 03 03 02 08 01 01 0b

brainpoolP384t1 1.3.36.3.3.2.8.1.1.12 06 09 2B 24 03 03 02 08 01 01 0c

brainpoolP512r1 1.3.36.3.3.2.8.1.1.13 06 09 2B 24 03 03 02 08 01 01 0d

brainpoolP512t1 1.3.36.3.3.2.8.1.1.14 06 09 2B 24 03 03 02 08 01 01 0e

c2pnb163v1 (X9.62 c2pnb163v1) 1.2.840.10045.3.0.1 06 08 2A 86 48 CE 3D 03 00 01

c2pnb163v2 (X9.62 c2pnb163v2) 1.2.840.10045.3.0.2 06 08 2A 86 48 CE 3D 03 00 02

c2pnb163v3 (X9.62 c2pnb163v3) 1.2.840.10045.3.0.3 06 08 2A 86 48 CE 3D 03 00 03

c2pnb176w1 (X9.62 c2pnb176w1)
c2pnb176v1 (X9.62 c2pnb176v1)

1.2.840.10045.3.0.4 06 08 2A 86 48 CE 3D 03 00 04

c2pnb208w1 (X9.62 c2pnb208w1) 1.2.840.10045.3.0.10 06 08 2A 86 48 CE 3D 03 00 0A

c2pnb272w1 (X9.62 c2pnb272w1) 1.2.840.10045.3.0.16 06 08 2A 86 48 CE 3D 03 00 10

c2pnb304w1 (X9.62 c2pnb304w1) 1.2.840.10045.3.0.17 06 08 2A 86 48 CE 3D 03 00 11

c2pnb368w1 (X9.62 c2pnb368w1) 1.2.840.10045.3.0.19 06 08 2A 86 48 CE 3D 03 00 13

c2tnb191v1 (X9.62 c2tnb191v1) 1.2.840.10045.3.0.5 06 08 2A 86 48 CE 3D 03 00 05

c2tnb191v2 (X9.62 c2tnb191v2) 1.2.840.10045.3.0.6 06 08 2A 86 48 CE 3D 03 00 06

c2tnb191v3 (X9.62 c2tnb191v3) 1.2.840.10045.3.0.7 06 08 2A 86 48 CE 3D 03 00 07

c2tnb239v1 (X9.62 c2tnb239v1) 1.2.840.10045.3.0.11 06 08 2A 86 48 CE 3D 03 00 0B

c2tnb239v2 (X9.62 c2tnb239v2) 1.2.840.10045.3.0.12 06 08 2A 86 48 CE 3D 03 00 0C

c2tnb239v3 (X9.62 c2tnb239v3) 1.2.840.10045.3.0.13 06 08 2A 86 48 CE 3D 03 00 0D

c2tnb359v1 (X9.62 c2tnb359v1) 1.2.840.10045.3.0.18 06 08 2A 86 48 CE 3D 03 00 12

c2tnb431r1 (X9.62 c2tnb431r1) 1.2.840.10045.3.0.20 06 08 2A 86 48 CE 3D 03 00 14

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 327

Chapter 5: Using the SafeNet SDK

Curve Name(s) OID (dot) OID (byte)

Ed25519 (edwards25519) 1.3.6.1.4.1.11591.15.1 06 09 2B 06 01 04 01 DA 47 0F 01

prime192v1 (X9.62 prime192v1, secp192r1) 1.2.840.10045.3.1.1 06 08 2A 86 48 CE 3D 03 01 01

prime192v2 (X9.62 prime192v2) 1.2.840.10045.3.1.2 06 08 2A 86 48 CE 3D 03 01 02

prime192v3 (X9.62 prime192v3) 1.2.840.10045.3.1.3 06 08 2A 86 48 CE 3D 03 01 03

prime239v1 (X9.62 prime239v1) 1.2.840.10045.3.1.4 06 08 2A 86 48 CE 3D 03 01 04

prime239v2 (X9.62 prime239v2) 1.2.840.10045.3.1.5 06 08 2A 86 48 CE 3D 03 01 05

prime239v3 (X9.62 prime239v3) 1.2.840.10045.3.1.6 06 08 2A 86 48 CE 3D 03 01 06

prime256v1 (X9.62 prime256v1, secp256r1) 1.2.840.10045.3.1.7 06 08 2A 86 48 CE 3D 03 01 07

secp112r1 1.3.132.0.6 06 05 2B 81 04 00 06

secp112r2 1.3.132.0.7 06 05 2B 81 04 00 07

secp128r1 1.3.132.0.28 06 05 2B 81 04 00 1C

secp128r2 1.3.132.0.29 06 05 2B 81 04 00 1D

secp160k1 1.3.132.0.9 06 05 2B 81 04 00 09

secp160r1 1.3.132.0.8 06 05 2B 81 04 00 08

secp160r2 1.3.132.0.30 06 05 2B 81 04 00 1E

secp192k1 1.3.132.0.31 06 05 2B 81 04 00 1F

secp224k1 1.3.132.0.32 06 05 2B 81 04 00 20

secp224r1 1.3.132.0.33 06 05 2B 81 04 00 21

secp256k1 1.3.132.0.10 06 05 2B 81 04 00 0A

secp384r1 1.3.132.0.34 06 05 2B 81 04 00 22

secp521r1 1.3.132.0.35 06 05 2B 81 04 00 23

sect113r1 1.3.132.0.4 06 05 2B 81 04 00 04

sect113r2 1.3.132.0.5 06 05 2B 81 04 00 05

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 328

Chapter 5: Using the SafeNet SDK

Curve Name(s) OID (dot) OID (byte)

sect131r1 1.3.132.0.22 06 05 2B 81 04 00 16

sect131r2 1.3.132.0.23 06 05 2B 81 04 00 17

sect163k1 1.3.132.0.1 06 05 2B 81 04 00 01

sect163r1 1.3.132.0.2 06 05 2B 81 04 00 02

sect163r2 1.3.132.0.15 06 05 2B 81 04 00 0F

sect193r1 1.3.132.0.24 06 05 2B 81 04 00 18

sect193r2 1.3.132.0.25 06 05 2B 81 04 00 19

sect233k1 1.3.132.0.26 06 05 2B 81 04 00 1A

sect233r1 1.3.132.0.27 06 05 2B 81 04 00 1B

sect239k1 1.3.132.0.3 06 05 2B 81 04 00 03

sect283k1 1.3.132.0.16 06 05 2B 81 04 00 10

sect283r1 1.3.132.0.17 06 05 2B 81 04 00 11

sect409k1 1.3.132.0.36 06 05 2B 81 04 00 24

sect409r1 1.3.132.0.37 06 05 2B 81 04 00 25

sect571k1 1.3.132.0.38 06 05 2B 81 04 00 26

sect571r1 1.3.132.0.39 06 05 2B 81 04 00 27

X25519 (curve25519) 1.3.6.1.4.1.3029.1.5.1 06 0a 2b 06 01 04 01 97 55 01 05 01

For additional information about the Elliptic Curve specification, refer to this article:

http://www.ietf.org/rfc/rfc4492.txt

Capability and Policy Configuration Control Using the SafeNet API
The configuration and control of the SafeNet Luna Network HSM is provided by a set of capabilities and policies
which you can query and set using the SafeNet API. See for more information.

HSM Capabilities and Policies
Each HSM has a set of capabilities. An HSM's capability set defines and controls the behavior of the HSM.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 329

http://www.ietf.org/rfc/rfc4492.txt

Chapter 5: Using the SafeNet SDK

HSM behavior can be further modified through changing policies. The HSM Admin can refine the behavior of
an HSM by changing the policy settings.

HSM Partition Capabilities and Policies
Each HSM can support one-or-more virtual HSMs called HSM Partitions (may also be called “containers” in
some areas of the API), which are used by properly authenticated remote clients to perform cryptographic
operations.

Each HSM Partition has a set of capabilities. An HSM Partition's capability set defines and controls the behavior
of the HSM partition.

HSM Partition behavior can be further modified through changing policies. The HSM Admin can refine the
behavior of an HSM Partition by changing the policy settings. Different partitions can have different values for
the configuration elements which apply to specific HSM Partitions – in other words, if a policy is set to a given
value for one HSM Partition, the policy can be set to a different value for another HSM Partition on the same
HSM.

In some cases, a partition policy change is destructive.

Policy Refinement
For every policy set element, there is a corresponding capability set element (the reverse is not true – there
can be some capability set elements that do not have corresponding policy set elements). The value of a policy
set element can be modified by the HSM Admin, but only within the limitations imposed by the corresponding
capability set element.

For example, there is a policy set element which determines howmany failed login attempts may be made
before a Partition is deleted or locked out. There is also a corresponding capability set element for the same
purpose. The policy element may be modified by the HSM Admin, but may only be set to a value less than or
equal to that of the capability set element. So if the capability set element has a value of 10, the HSM Admin can
set the policy to a value less than or equal to 10.

In general, the HSM Admin may modify policy set elements to make the HSM or partition policy more restrictive
than that imposed by the capability set elements. The HSM Admin can not make the HSM or HSM Partition
policy less restrictive or enable functionality that is disabled through capability settings.

Policy Types
There are three types of policy elements, as follows:

Normal
policy
elements

May be set at any time by the HSM Admin. The values whichmay be set are limited only by the
corresponding capability element as described in the previous section (i.e. the policy element can be
set only to a value less than or equal to the capability set element).

Destructive
policy
elements

May be set at any time, but setting them results in the erasure of any partitions and their contents.
Policy elements are destructive if changing them significantly affects the security policy of the HSM.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 330

Chapter 5: Using the SafeNet SDK

Write-
restricted
policy
elements

Cannot bemodified directly, but instead are affected by other actions that can be taken.

Querying andModifying HSM Configuration
The following are the relevant functions (found in sfnt_extensions.h):
> CK_RVCK_ENTRYCA_GetConfigurationElementDescription(

> CK_SLOT_ID slotID,

> CK_ULONG ulIsContainerElement,

> CK_ULONG ulIsCapabilityElement,

> CK_ULONG ulElementId,

> CK_ULONG_PTR pulElementBitLength,

> CK_ULONG_PTR pulElementDestructive,

> CK_ULONG_PTR pulElementWriteRestricted,

> CK_CHAR_PTR pDescription);

> CK_RVCK_ENTRYCA_GetHSMCapabilitySet(

> CK_SLOT_ID uPhysicalSlot,

> CK_ULONG_PTR pulCapIdArray,

> CK_ULONG_PTR pulCapIdSize,

> CK_ULONG_PTR pulCapValArray,

> CK_ULONG_PTR pulCapValSize);

> CK_RVCK_ENTRYCA_GetHSMCapabilitySetting (

> CK_SLOT_ID slotID,

> CK_ULONG ulPolicyId,

> CK_ULONG_PTR pulPolicyValue);

> CK_RVCK_ENTRYCA_GetHSMPolicySet(

> CK_SLOT_ID uPhysicalSlot,

> CK_ULONG_PTR pulPolicyIdArray,

> CK_ULONG_PTR pulPolicyIdSize,

> CK_ULONG_PTR pulPolicyValArray,

> CK_ULONG_PTR pulPolicyValSize);

> CK_RVCK_ENTRYCA_GetHSMPolicySetting (

> CK_SLOT_ID slotID,

> CK_ULONG ulPolicyId,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 331

Chapter 5: Using the SafeNet SDK

> CK_ULONG_PTR pulPolicyValue);

> CK_RVCK_ENTRYCA_GetContainerCapabilitySet(

> CK_SLOT_ID uPhysicalSlot,

> CK_ULONG ulContainerNumber,

> CK_ULONG_PTR pulCapIdArray,

> CK_ULONG_PTR pulCapIdSize,

> CK_ULONG_PTR pulCapValArray,

> CK_ULONG_PTR pulCapValSize);

> CK_RVCK_ENTRYCA_GetContainerCapabilitySetting (

> CK_SLOT_ID slotID,

> CK_ULONG ulContainerNumber,

> CK_ULONG ulPolicyId,

> CK_ULONG_PTR pulPolicyValue);

> CK_RVCK_ENTRYCA_GetContainerPolicySet(

> CK_SLOT_ID uPhysicalSlot,

> CK_ULONG ulContainerNumber,

> CK_ULONG_PTR pulPolicyIdArray,

> CK_ULONG_PTR pulPolicyIdSize,

> CK_ULONG_PTR pulPolicyValArray,

> CK_ULONG_PTR pulPolicyValSize);

> CK_RVCK_ENTRYCA_GetContainerPolicySetting(

> CK_SLOT_ID uPhysicalSlot,

> CK_ULONG ulContainerNumber,

> CK_ULONG ulPolicyId,

> CK_ULONG_PTR pulPolicyValue);

> CK_RVCK_ENTRYCA_SetHSMPolicy (

> CK_SESSION_HANDLE hSession,

> CK_ULONG ulPolicyId,

> CK_ULONG ulPolicyValue);

> CK_RVCK_ENTRYCA_SetDestructiveHSMPolicy (

> CK_SESSION_HANDLE hSession,

> CK_ULONG ulPolicyId,

> CK_ULONG ulPolicyValue);

> CK_RVCK_ENTRYCA_SetContainerPolicy (

> CK_SESSION_HANDLE hSession,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 332

Chapter 5: Using the SafeNet SDK

> CK_ULONG ulContainer,

> CK_ULONG ulPolicyId,

> CK_ULONG ulPolicyValue);

The CA_GetConfigurationElementDescription() Function
The CA_GetConfigurationElementDescription() function requires that you pass in a zero or one value to
indicate whether the element you are querying is an HSM Partition (container) element or an HSM element,
and another zero/one value to define whether it is a capability or policy that you are interested in. You also pass
in the id of the element and a character buffer of at least 60 characters. The function then returns the size of the
element value (in bits), an indication of whether the element is destructive, an indication of whether the policy (if
it is a policy) is write-restricted, and it also writes the description string into the buffer that you provided.

The CA_Get{HSM|Container}{Capability|Policy}Set() Functions
The variousCA_Get{HSM|Container}{Capability|Policy}Set() functions all return (in the word arrays
provided) a complete list of element id/value pairs for the set specified. For example,CA_
GetHSMCapabilitySet() returns a list of all HSM capability elements and their values. The parameters for
these functions include a list pointer and length pointer for each of the element ids and element values. On
calling the function, you should provide a buffer or a null pointer for each of the lists, and the length value
should be initialized to the size of the buffer. On return, the buffer (if given) is populated, and the length is
updated to the real length of the list. If the buffer is given but is not large enough, an error results.

Typically you would invoke the function twice: call the function the first time with null buffer pointers so that the
real length necessary is returned, then allocate the necessary buffers and call the function a second time,
giving the real buffers.

The variousCA_Get{HSM|Container}{Capability|Policy}Setting() functions allow you to query a specific
element value. Provide the element id and the function returns the value.

The CA_Set...() Functions
The variousCA_Set...() functions allow you to set individual HSM and HSM Partition policies. There are two
varieties for setting HSM policies, because changing the value of a destructive HSM policy results in the HSM
being cleared of any Partitions and their contents. To make it clear when this is going to happen, the
appropriate set function must be called based on whether the HSM policy is destructive or not (which you can
determine with the CA_GetConfigurationElementDescription() function).

Connection Timeout
The connection timeout is not configurable.

Linux and Unix Connection Timeout
On Unix platforms, the client performs a connect on the socket. If the socket is busy or unavailable, the client
performs a select on the socket with the timeout set to 10 seconds (hardcoded). If the select call returns
before the timeout, then the client is able to connect. If not then it fails. This prevents the situation where some
Unix operating systems can block for several minutes when SafeNet Luna Network HSM is unavailable.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 333

Chapter 5: Using the SafeNet SDK

Windows Connection Timeout
OnWindows platforms, connect is called without select, relying upon the default Windows timeout of
approximately 20 seconds.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 334

CHAPTER 6: Design Considerations

This chapter provides guidance for creating applications that use specific SafeNet Luna Network HSM
configurations or features. It contains the following topics:

> "PED-Authenticated HSMs" below

> "High Availability (HA) Implementations" on page 337

> "Key Attribute Defaults" on page 339

> "Object Usage Count" on page 341

> "Migrating Keys FromSoftware to a SafeNet Luna Network HSM" on page 344

> "Audit Logging" on page 368

PED-Authenticated HSMs
In systems or applications using SafeNet Luna Network HSMs, Luna PED is required for FIPS 140-2 level 3
security. In normal use, Luna PED supplies PINs and certain other critical security parameters to the
token/HSM, invisibly to the user. This prevents other persons from viewing PINs, etc. on a computer screen or
watching them typed on a keyboard, which in turn prevents such persons from illicitly cloning token or HSM
contents.

Two classes of users operate Luna PED: the ordinary HSM Partition Owner, and the HSM Administrator, (also
called Security Officer or SO). The person handling new HSMs and using Luna PED is normally the HSM SO,
who:

> Initializes the HSM

> Conducts HSM maintenance, such as firmware and capability upgrades

> Initializes HSM Partitions and tokens

> Creates users (sets PINs)

> Changes policy settings

> Changes passwords

Following these initial activities, the Luna PEDmay be required to present the HSM Partition Owner’s PED key
or keys (in case of MofN operations) to enable ordinary signing cryptographic operations carried out by your
applications.

With the combination of Activation and AutoActivation, the black PED key is required only upon initial
authentication and then not again unless the authentication is interrupted by power failure or by deliberate
action on the part of the PED key holders.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 335

Chapter 6: Design Considerations

About CKDemowith Luna PED
As its name suggests, CKDemo (CryptoKi Demonstration) is a demonstration program, allowing you to explore
the capabilities and functions of several SafeNet products. The demo program breaks out a number of PKCS
11 functions, as well as the SafeNet extensions to Cryptoki that allow the enhanced capabilities of our HSMs.
However the flexibility, combined with the bare-bones nature of the program, can result in some confusion as
to whether certain operations and combinations are permissible. Where these come up, in the explanation of
CKDemo with SafeNet Luna Network HSM with PED [Trusted Path] Authentication, and Luna PED, they are
mentioned and explained if necessary.

The demo program appears to make it optional to permit several of the security operations via the keyboard
and program interface, or to require that they be done only via the Luna PED keypad. In fact, the option is
dictated by the SafeNet Luna Network HSM, as it was configured and shipped from the factory, and cannot be
changed by you. That is, you can use CKDemo to work/experiment with either type of SafeNet Luna Network
HSM (i.e., SafeNet Luna Network HSM with Password Authentication or SafeNet Luna Network HSM with PED
Authentication, requiring Luna PED), but you cannot make one type behave like the other.

Security and design requirements, enforced by the SafeNet Luna Network HSM with PED Authentication HSM,
dictate that use of Luna PED be mandatory within the applications that you develop for it.

Interchangeability
As mentioned above, several secrets and security parameters related to HSMs are imprinted on PED keys
which provide "something you have" access control, as opposed to the "something you know" access control
provided by password-authenticated HSMs. The HSM can create each type of secret, which is then also
imprinted on a suitably labeled PED key. Alternatively, the secret can be accepted from a PED key (previously
imprinted by another HSM) and imprinted on the current HSM. This is mandatory for the cloning domain, when
HSMs (or HSM partitions) are to clone objects one to the other. It is optional for the other HSM secrets, as a
matter of convenience or of your security policy, allowing more than one HSM to be accessed for
administration by a single SO (blue PED key holder) or more than one HSM Partition to be administered by a
single Partition Owner/User.

PED keys that have never been imprinted are completely interchangeable. They can be used with any modern
SafeNet Luna Network HSM, and can be imprinted with any of the various secrets. The self-stick labels are
provided as a visual identifier of which type of secret has been imprinted on a PED key, or is about to be
imprinted. Imprinted PED keys are tied to their associated HSMs and cannot be used to access HSMs or
partitions that have been imprinted with different secrets.

Any Luna PED2 can be used with any SafeNet Luna Network HSM - the PED itself contains no secrets; it simply
provides the interface between you and your HSM(s). The exception is that only some Luna PEDs have the
capability to be used remotely from the HSM. Any Remote-capable Luna PED2 is interchangeable with any
other Remote-capable Luna PED2, and any Luna PED2 (remote-capable or not) is interchangeable with any
other when locally connected to a SafeNet Luna Network HSM.

HSM Partitions and Backup Tokens and PED keys can be “re-cycled” for use in different combinations, but this
reuse requires re-initializing the HSM(s) and re-imprinting the PED keys with new secrets or security
parameters. Re-initializing a token or HSM wipes previous information from it. Re-imprinting a PED key
overwrites any previous information it carried (PIN, domain, etc.).

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 336

Chapter 6: Design Considerations

Startup
Luna PED expects to be connected to a SafeNet Luna Network HSM with Trusted Path Authentication. At
power-up, it presents a message showing its firmware version. After a few seconds, the message changes to
"Awaiting command..." The Luna PED is waiting for a command from the token/HSM.

The Luna PED screen remains in this status until the CKDemo program, or your own application, initiates a
command through the token/HSM.

For the purposes of demonstration, you would now go ahead and create some objects and perform other
transactions with the HSM.

NOTE To perform most actions you must be logged in. CKDemo may not remind you before
you perform actions out-of-order, but it generates error messages after such attempts. If you
receive an error message from the program, review your recent actions to determine if you
have logged out or closed sessions and then not formally logged into a new session before
attempting to create an object or perform other token/HSM actions. When you do wish to end
activities, be sure to formally log out and close sessions. An orderly shutdown of your
application should include logging out any users and closing all sessions on HSMs.

Cloning of Tokens
To securely copy the contents of a SafeNet Luna Network HSM Partition to another SafeNet Luna Network
HSM Partition (on the same SafeNet Luna Network HSM or on another), you must perform a backup to a
SafeNet Luna Backup HSM from the source HSM Partition followed by a restore operation from the Backup
HSM to the new destination HSM Partition. This is done via LunaSH command line, and cannot be
accomplished via CKDemo.

High Availability (HA) Implementations
If you use the SafeNet Luna Network HSM HA feature then the calls to the SafeNet Luna Network HSMs are
load-balanced. The session handle that the application receives when it opens a session is a virtual one and is
managed by the HA code in the library. The actual sessions with the HSM are established by the HA code in the
library and hidden from the application and will come and go as necessary to fulfill application level requests.

Before the introduction of HAAutoRecovery, bringing a failed/lost group member back into the group
(recovery) was a manual procedure.

The Administration &Maintenance section contains a general description of the how the HAAutoRecovery
function works, in practice.

For every PKCS#11 call, the HA recover logic will check to see if we need to perform auto recovery to a
disconnected appliance. If there is a disconnected appliance then it will try to reconnect to that appliance
before it proceeds with the current PKCS#11 call.

The HA recovery logic is designed in such a way that it will try to reconnect to an appliance only every X secs
and N number of times where X is pre-set to one minute, and N is configurable via Lunacm.

For HA recovery attempts:

> The default retry interval is 60 seconds.

> The default number of retries is effectively infinite.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 337

Chapter 6: Design Considerations

> The HA configuration section in the Chrystoki.conf/crystoki.ini file is created and populated when either
the interval or the number of retries is specified in the LunaCM commands "hagroup retry" on page 1 and
"hagroup interval" on page 1.

The following is the pseudo code of the HA logic
if (disconnected_member > 0 and recover_attempt_count < N and time_now - last_recover_attempt >
X) then
 performance auto recovery
 set last_recover_attempt equal to time_now
 if (recovery failed) then
 increment recover_attempt_count by 1
 else
 decrement disconnected_member by 1
 reset recover_attempt_count to 0
 end if
end if
The HA auto recovery design runs within a PKCS#11 call. The responsiveness of recovering a disconnected
member is greatly influenced by the frequency of PKCS#11 calls from the user application. Although the logic
shows that it will attempt to recover a disconnected client in X secs, in reality, it will not run until the user
application makes the next PKCS#11 call.

Detecting the Failure of an HAMember
When an HAGroup member first fails, the HA status for the group shows "device error" for the failed member.
All subsequent calls return "token not present", until the member (HSM Partition or PKI token) is returned to
service.

Here is an example of two such calls using CKDemo:
Enter your choice : 52
Slots available:
 slot#1 - LunaNet Slot
 slot#2 - LunaNet Slot
 slot#3 - HA Virtual Card Slot

Select a slot: 3

HA group 1599447001 status:
 HSM 599447001 - CKR_DEVICE_ERROR
 HSM 78665001 - CKR_OK
Status: Doing great, no errors (CKR_OK)

TOKEN FUNCTIONS
(1) Open Session (2) Close Session (3) Login
(4) Logout (5) Change PIN (6) Init Token
(7) Init Pin (8) Mechanism List (9) Mechanism Info
(10) Get Info (11) Slot Info (12) Token Info
(13) Session Info (14) Get Slot List (15) Wait for Slot Event
(16) InitToken(ind)(17) InitPin (ind) (18) Login (ind)
(19) CloneMofN

OBJECT MANAGEMENT FUNCTIONS
(20) Create object (21) Copy object (22) Destroy object
(23) Object size (24) Get attribute (25) Set attribute
(26) Find object (27) Display Object

SECURITY FUNCTIONS
(40) Encrypt file (41) Decrypt file (42) Sign

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 338

Chapter 6: Design Considerations

(43) Verify (44) Hash file (45) Simple Generate Key
(46) Digest Key

HIGH AVAILABILITY RECOVERY FUNCTIONS
(50) HA Init (51) HA Login (52) HA Status

KEY FUNCTIONS
(60) Wrap key (61) Unwrap key (62) Generate random number
(63) Derive Key (64) PBE Key Gen (65) Create known keys
(66) Seed RNG (67) EC User Defined Curves

CA FUNCTIONS
(70) Set Domain (71) Clone Key (72) Set MofN
(73) Generate MofN (74) Activate MofN (75) Generate Token Keys
(76) Get Token Cert(77) Sign Token Cert(78) Generate CertCo Cert
(79) Modify MofN (86) Dup. MofN Keys (87) Deactivate MofN

CCM FUNCTIONS
(80) Module List (81) Module Info (82) Load Module
(83) Load Enc Mod (84) Unload Module (85) Module function Call

OTHERS
(90) Self Test (94) Open Access (95) Close Access
(97) Set App ID (98) Options

OFFBOARD KEY STORAGE:
(101) Extract Masked Object (102) Insert Masked Object
(103) Multisign With Value (104) Clone Object
(105) SIMExtract (106) SIMInsert
(107) SimMultiSign

SCRIPT EXECUTION:
(108) Execute Script
(109) Execute Asynchronous Script
(110) Execute Single Part Script
(0) Quit demo
Enter your choice : 52

Slots available:
 slot#1 - LunaNet Slot
 slot#2 - LunaNet Slot
 slot#3 - HA Virtual Card Slot

Select a slot: 3

HA group 1599447001 status:
 HSM 599447001 - CKR_TOKEN_NOT_PRESENT
 HSM 78665001 - CKR_OK
Status: Doing great, no errors (CKR_OK)
--- end ---

Key Attribute Defaults
The following default attribute settings are applied to generated keys/keypairs, and to unwrapped
private/secret keys, unless your application specifies different values.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 339

Chapter 6: Design Considerations

Management Attributes

Attribute Default Value

Generated Public
Keys

Generated Private
Keys

Unwrapped
Private/Secret
Keys

Derived Secret
Keys

CKA_TOKEN 0 (FALSE) 0 (FALSE) 0 (FALSE) 0 (FALSE)

CKA_PRIVATE 1 (TRUE) if Crypto
Officer logged in
0 (FALSE) if Crypto
Officer not logged in

1 (TRUE) if Crypto
Officer logged in
0 (FALSE) if Crypto
Officer not logged in

1 (TRUE) if Crypto
Officer logged in
0 (FALSE) if Crypto
Officer not logged in

1 (TRUE) if Crypto
Officer logged in
0 (FALSE) if Crypto
Officer not logged in

CKA_SENSITIVE N/A 1 (TRUE) 1 (TRUE) 0 (FALSE)

CKA_MODIFIABLE 1 (TRUE) 1 (TRUE) 1 (TRUE) 1 (TRUE)

CKA_
EXTRACTABLE

N/A 0 (FALSE) 0 (FALSE) 0 (FALSE)

CKA_ALWAYS_
SENSITIVE

N/A Always the same
value as CKA_
SENSITIVE

Always 0 (FALSE) Inherited from base
key(s) depending on
CKA_SENSITIVE
history*

CKA_NEVER_
EXTRACTABLE

N/A Always the opposite
value of CKA_
EXTRACTABLE

Always 0 (FALSE) Inherited from base
key(s) depending on
CKA_
EXTRACTABLE
history**

* CKA_ALWAYS_SENSITIVE=1 assures that the key and the key(s) from which it was derived have always
been sensitive (CKA_SENSITIVE=1). If a newly-derived key has CKA_ALWAYS_SENSITIVE=0, it means the
key(s) from which it derives has had CKA_SENSITIVE=0 at some point.

** CKA_NEVER_EXTRACTABLE=1 assures that the key and the key(s) from which it was derived have never
been extractable (CKA_EXTRACTABLE has always been set to 0). If a newly-derived key has CKA_NEVER_
EXTRACTABLE=0, it means the key(s) from which it derives has had CKA_EXTRACTABLE=1 at some point.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 340

Chapter 6: Design Considerations

Key Usage Attributes

Attribute Default Value

Generated Public
Keys

Generated Private
Keys

Unwrapped
Private/Secret
Keys

Derived Secret
Keys

CKA_ENCRYPT 0 (FALSE) N/A 0 (FALSE) 0 (FALSE)

CKA_DECRYPT N/A 0 (FALSE) 0 (FALSE) 0 (FALSE)

CKA_WRAP 0 (FALSE) N/A 0 (FALSE) 0 (FALSE)

CKA_UNWRAP N/A 0 (FALSE) 0 (FALSE) 0 (FALSE)

CKA_SIGN N/A 0 (FALSE) 0 (FALSE) 0 (FALSE)

CKA_VERIFY 0 (FALSE) N/A 0 (FALSE) 0 (FALSE)

CKA_DERIVE 0 (FALSE) N/A 0 (FALSE) 0 (FALSE)

Vendor-defined key attributes

KEY ATTRIBUTE DESCRIPTION

CKA_CCM_PRIVATE Not used by the Luna HSM; it does not affect any of the HSM functionality. This is an old
attribute that was used in the firmware 3.x HSMs, the Luna CA and Luna CA3 products.

CKA_OUID This is a 12-byte unique identifier for the object, unique across all Luna HSMs. It can be
used to identify the object across multiple HSM.

CKA_EKM_UID This is not used by the Luna HSM, it does not affect any of the HSM functionality. It is
intended to be used by our EKM Key Manager SHIM to store a KEY ID, so that the key
manager can track keys efficiently. Customer applications should not use this (they
should use the CKA_GENERIC_1/2/3 attributes defined below).

CKA_GENERIC_1/2/3 These are not used by the Luna HSM, and do not affect any of the HSM functionality.
They are variable length attributes that store an array of CK_BYTE and are provided for
customer applications tomake use of, to store whatever data they want.

Object Usage Count
You may wish to create keys that have a limited number of uses. You can set attributes on a key object to track
and limit the number of cryptographic operations that object may perform. The relevant attributes are:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 341

Chapter 6: Design Considerations

> CKA_USAGE_COUNT: the number of operations that have been performed using the key

> CKA_USAGE_LIMIT: the maximum number of operations allowed for the key.

When the limit set by CKA_USAGE_LIMIT is reached, attempts to use the key for operations like
encrypt/decrypt, sign/verify, etc. will return an error (CKR_KEY_NOT_ACTIVE).

Setting CKA_USAGE_LIMIT on a key using CKDEMO
You can use CKDEMO to set this limit for a specific key on the HSM.

To set CKA_USAGE_LIMIT on a key:

1. Navigate to the SafeNet Luna HSM Client directory and run CKDEMO.

2. SelectOption 1 (Open Session).
3. SelectOption 3 (Login), select the partition where the key is located, and present the Crypto Officer login

credential.

4. If you do not know the key's object handle, selectOption 27 (Display Object) and enter 0 to view a list of
available objects.

5. SelectOption 25 (Set Attribute) and enter the key's object handle when prompted.
6. Select Sub-option 1 (Add Attribute), and 53 (CKA_USAGE_LIMIT) from the list of attributes.

7. Enter the desired maximum number of uses in hexadecimal (Allowable range: 1 - FFFFFFFF).

8. SelectOption 27 and enter the key's object handle to view the key attributes. When you set CKA_USAGE_
LIMIT in step 7, CKA_USAGE_COUNT is also set, with a value of 0:
Enter your choice: 27

Enter handle of object to display (0 to list available objects) : 247
Object handle=247
CKA_CLASS=0003 (3)
CKA_TOKEN=01
CKA_PRIVATE=01
CKA_LABEL=Generated RSA Private Key
CKA_KEY_TYPE=0000 (0)
CKA_SUBJECT=
CKA_ID=
CKA_SENSITIVE=01
CKA_DECRYPT=01
CKA_UNWRAP=01
CKA_SIGN=01
CKA_SIGN_RECOVER=00
CKA_DERIVE=00
CKA_START_DATE=
CKA_END_DATE=
CKA_MODULUS=bc613525ae8c5b30ca086c0e688f2f0ed6928805bf007d4fc...
CKA_MODULUS_BITS=0400 (1024)
CKA_PUBLIC_EXPONENT=010001
CKA_LOCAL=01
CKA_MODIFIABLE=01
CKA_EXTRACTABLE=01
CKA_ALWAYS_SENSITIVE=01
CKA_NEVER_EXTRACTABLE=00
CKA_CCM_PRIVATE=00

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 342

Chapter 6: Design Considerations

CKA_FINGERPRINT_SHA1=6beddef34f9f5c8023e3422daecd6bd91c2dc40d
CKA_OUID=b00800000300000d1b030100
CKA_X9_31_GENERATED=00
CKA_EKM_UID=
CKA_USAGE_LIMIT=000e (15)
CKA_USAGE_COUNT=0000 (0)
CKA_GENERIC_1=
CKA_GENERIC_2=
CKA_GENERIC_3=
CKA_FINGERPRINT_SHA256=a8293ea9ddb578bcca644279c9753de4df772958563d259bed28c5d2a2e04e7d

Status: Doing great, no errors (CKR_OK)

Using this key to perform cryptographic operations will now increment the value of CKA_USAGE_COUNT.

Creatingmultiple keys with CKA_USAGE_LIMIT using CKDEMO
If you are creating multiple, usage-limited keys in CKDEMO, you can simplify this procedure by changing a
CKDEMO setting. You will then have the option to set a usage limit for all new keys created in that session.

To create multiple keys with CKA_USAGE_LIMIT set:

1. Navigate to the SafeNet Luna HSM Client directory and run CKDEMO.

2. SelectOption 98 (Options).
3. SelectOption 10 (Object Usage Counters).

Note that the option value has changed from "disabled" to "selectable".

4. Enter 0 to exit the (Options)menu.
5. Open a session and begin creating your new keys. In addition to setting the attributes governing key

capabilities, you will be prompted to enter a value for CKA_USAGE_LIMIT (in hexadecimal):
Select type of key to generate
[1] DES [2] DES2 [3] DES3 [5] CAST3
[6] Generic [7] RSA [8] DSA [9] DH [10] CAST5
[11] RC2 [12] RC4 [13] RC5 [14] SSL3 [15] ECDSA
[16] AES [17] SEED [18] KCDSA-1024 [19] KCDSA-2048
[20] DSA Domain Param [21] KCDSA Domain Param
[22] RSA X9.31 [23] DH X9.42 [24] ARIA
[25] DH PKCS Domain Param [26] RSA 186-3 Aux Primes
[27] RSA 186-3 Primes [28] DH X9.42 Domain Param
[29] ECDSA with Extra Bits [30] EC Edwards
[31] EC Montgomery
> 7

Enter Key Length in bits: 1024

Enter Is Token Attribute [0-1]: 1

Enter Is Sensitive Attribute [0-1]: 1

Enter Is Private Attribute [0-1]: 1

Enter Is Modifiable Attribute [0-1]: 1

Enter Extractable Attribute [0-1]: 1

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 343

Chapter 6: Design Considerations

Enter Encrypt/Decrypt Attribute [0-1]: 1

Enter Sign/Verify Attribute [0-1]: 1

Enter Wrap/Unwrap Attribute [0-1]: 1

Enter Derive Attribute [0-1]: 1
Would you like to specify a usage count limit? [0-no, 1-yes]: 1
Please enter the limit in HEX: 0E
Generated RSA Public Key: 160 (0x000000a0)
Generated RSA Private Key: 247 (0x000000f7)

Status: Doing great, no errors (CKR_OK)

Migrating Keys From Software to a SafeNet Luna Network HSM
SafeNet Luna Network HSMs expect key material to be in PKCS#8 format. PKCS#8 format follows BER (Basic
encoding rules)/DER (distinguished encoding rules) encoding. An example of this format can be found in the
document "Some examples of PKCS standards" produced by RSA, and available on their web site
(http://www.rsasecurity.com/rsalabs/pkcs/index.html at the bottom of the page, under “Related Documents”).

Here is an example of a formatted key:
 0x30,
0x82, 0x04, 0xbc, 0x02, 0x01, 0x00, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, 0x04,
0xa6, 0x30, 0x82, 0x04, 0xa2, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x01,
0x00, 0xb8, 0xb5, 0x0f, 0x49, 0x46, 0xb5, 0x5d, 0x58, 0x04, 0x8e, 0x52,
0x59, 0x39, 0xdf, 0xd6, 0x29, 0x45, 0x6b, 0x6c, 0x96, 0xbb, 0xab, 0xa5,
0x6f, 0x72, 0x1b, 0x16, 0x96, 0x74, 0xd5, 0xf9, 0xb4, 0x41, 0xa3, 0x7c,
0xe1, 0x94, 0x73, 0x4b, 0xa7, 0x23, 0xff, 0x61, 0xeb, 0xce, 0x5a, 0xe7,
0x7f, 0xe3, 0x74, 0xe8, 0x52, 0x5b, 0xd6, 0x5d, 0x5c, 0xdc, 0x98, 0x49,
0xfe, 0x51, 0xc2, 0x7e, 0x8f, 0x3b, 0x37, 0x5c, 0xb3, 0x11, 0xed, 0x85,
0x91, 0x15, 0x92, 0x24, 0xd8, 0xf1, 0x7b, 0x3d, 0x2f, 0x8b, 0xcd, 0x1b,
0x30, 0x14, 0xa3, 0x6b, 0x1b, 0x4d, 0x27, 0xff, 0x6a, 0x58, 0x84, 0x9e,
0x79, 0x94, 0xca, 0x78, 0x64, 0x01, 0x33, 0xc3, 0x58, 0xfc, 0xd3, 0x83,
0xeb, 0x2f, 0xab, 0x6f, 0x85, 0x5a, 0x38, 0x41, 0x3d, 0x73, 0x20, 0x1b,
0x82, 0xbc, 0x7e, 0x76, 0xde, 0x5c, 0xfe, 0x42, 0xd6, 0x7b, 0x86, 0x4f,
0x79, 0x78, 0x29, 0x82, 0x87, 0xa6, 0x24, 0x43, 0x39, 0x74, 0xfe, 0xf2,
0x0c, 0x08, 0xbe, 0xfa, 0x1e, 0x0a, 0x48, 0x6f, 0x14, 0x86, 0xc5, 0xcd,
0x9a, 0x98, 0x09, 0x2d, 0xf3, 0xf3, 0x5a, 0x7a, 0xa4, 0xe6, 0x8a, 0x2e,
0x49, 0x8a, 0xde,
0x73, 0xe9, 0x37, 0xa0, 0x5b, 0xef, 0xd0, 0xe0, 0x13, 0xac, 0x88, 0x5f,
0x59, 0x47, 0x96, 0x7f, 0x78, 0x18, 0x0e, 0x44, 0x6a, 0x5d, 0xec,
0x6e, 0xed, 0x4f, 0xf6, 0x6a, 0x7a, 0x58, 0x6b, 0xfe, 0x6c, 0x5a, 0xb9,
0xd2, 0x22, 0x3a, 0x1f, 0xdf, 0xc3, 0x09, 0x3f, 0x6b, 0x2e, 0xf1, 0x6d,
0xc3, 0xfb, 0x4e, 0xd4, 0xf2, 0xa3, 0x94, 0x13, 0xb0, 0xbf, 0x1e, 0x06,
0x2e, 0x29, 0x55, 0x00, 0xaa, 0x98, 0xd9, 0xe8, 0x77, 0x84, 0x8b, 0x3f,
0x5f, 0x5e, 0xf7, 0xf8, 0xa7, 0xe6, 0x02, 0xd2, 0x18, 0xb0, 0x52, 0xd0,
0x37, 0x2e, 0x53, 0x02, 0x03, 0x01, 0x00, 0x01, 0x02, 0x82, 0x01, 0x00,
0x0c, 0xdf, 0xd1, 0xe8, 0xf1, 0x9c, 0xc2, 0x9c, 0xd7, 0xf4, 0x73, 0x98,
0xf4, 0x87, 0xbd, 0x8d, 0xb2, 0xe1, 0x01, 0xf8, 0x9f, 0xac, 0x1f, 0x23,
0xdd, 0x78, 0x35, 0xe2, 0xd6, 0xd1, 0xf3, 0x4d, 0xb5, 0x25, 0x88, 0x16,
0xd1, 0x1a, 0x18, 0x33, 0xd6, 0x36, 0x7e, 0xc4, 0xc8, 0xe5, 0x5d, 0x2d,
0x74, 0xd5, 0x39, 0x3c, 0x44, 0x5a, 0x74, 0xb7, 0x7c, 0x48, 0xc1, 0x1f,
0x90, 0xe3, 0x55, 0x9e, 0xf6, 0x29, 0xad, 0xb4, 0x6d, 0x93, 0x78, 0xb3,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 344

Chapter 6: Design Considerations

0xdc, 0x25, 0x0b, 0x9c, 0x73, 0x78, 0x7b, 0x93, 0x4c, 0xd3, 0x47, 0x09,
0xda, 0xe6, 0x69, 0x18, 0xc6, 0x0f, 0xfb, 0xa5, 0x95, 0xf5, 0xe8, 0x75,
0xe1, 0x01, 0x1b, 0xd3, 0x1c, 0xa2, 0x57, 0x03, 0x64, 0xdb, 0xf9, 0x5d,
0xf3, 0x3c, 0xa7, 0xd1, 0x4b, 0xb0, 0x90, 0x1b, 0x90, 0x62, 0xb4, 0x88,
0x30, 0x4b, 0x40, 0x4d, 0xcf, 0x7d, 0x89, 0x7a, 0xfb, 0x29, 0xc9, 0x64,
0x34, 0x0a, 0x52, 0xf6, 0x70, 0x7c, 0x76, 0x5a, 0x2e, 0x8f, 0x50, 0xd4,
0x92, 0x15, 0x97, 0xed, 0x4c, 0x2e, 0xf2, 0x3a, 0xd0, 0x58, 0x7e, 0xdb,
0xf1, 0xf4, 0xdd, 0x07, 0x76, 0x04, 0xf0, 0x55, 0x8b, 0x72, 0x2b, 0xa7,
0xa8, 0x78, 0x78, 0x67, 0xe6, 0xd8, 0xa5, 0xde, 0xe7, 0xc9, 0x1f, 0x5a,
0xa0, 0x89, 0xc7, 0x24, 0xa2, 0x71, 0xb6, 0x7b, 0x3b, 0xe6, 0x92, 0x69,
0x22, 0xaa, 0xe2, 0x47, 0x4b, 0x80, 0x3f, 0x6a, 0xab, 0xce, 0x4e, 0xcd,
0xe8, 0x94, 0x6c, 0xf7, 0x84, 0x73, 0x85, 0xfd, 0x85, 0x1d, 0xae, 0x81,
0xf7, 0xec, 0x12, 0x31, 0x7d, 0xc1, 0x99, 0xc0, 0x3c, 0x51, 0xb0, 0xdc,
0xb0, 0xba, 0x9c, 0x84, 0xb8, 0x70, 0xc2, 0x09, 0x7f, 0x96, 0x3d, 0xa1,
0xe2, 0x64, 0x27, 0x7a, 0x22, 0xb8, 0x75, 0xb9, 0xd1, 0x5f, 0xa5, 0x23,
0xf9, 0x62, 0xe0, 0x41, 0x02, 0x81, 0x81, 0x00, 0xf4, 0xf3, 0x08, 0xcf,
0x83, 0xb0, 0xab, 0xf2, 0x0f, 0x1a, 0x08, 0xaf, 0xc2, 0x42, 0x29, 0xa7,
0x9c, 0x5e, 0x52, 0x19, 0x69, 0x8d, 0x5b, 0x52, 0x29, 0x9c, 0x06, 0x6a,
0x5a, 0x32, 0x8f, 0x08, 0x45, 0x6c, 0x43, 0xb5, 0xac, 0xc3, 0xbb, 0x90,
0x7b, 0xec, 0xbb, 0x5d, 0x71, 0x25, 0x82, 0xf8, 0x40, 0xbf, 0x38, 0x00,
0x20, 0xf3, 0x8a, 0x38, 0x43, 0xde, 0x04, 0x41, 0x19, 0x5f, 0xeb, 0xb0,
0x50, 0x59, 0x10, 0xe1, 0x54, 0x62, 0x5c, 0x93, 0xd9, 0xdc, 0x63, 0x24,
0xd0, 0x17, 0x00, 0xc0, 0x44, 0x3e, 0xfc, 0xd1, 0xda, 0x4b, 0x24, 0xf7,
0xcb, 0x16, 0x35, 0xe6, 0x9f, 0x67, 0x96, 0x5f, 0xb0, 0x94, 0xde, 0xfa,
0xa1, 0xfd, 0x8c, 0x8a, 0xd1, 0x5c, 0x02, 0x8d, 0xe0, 0xa0, 0xa0, 0x02,
0x1d, 0x56, 0xaf, 0x13, 0x3a, 0x65, 0x5e, 0x8e, 0xde, 0xd1, 0xa8, 0x28,
0x8b, 0x71, 0xc9, 0x65, 0x02, 0x81, 0x81, 0x00, 0xc1, 0x0a, 0x47,
0x39, 0x91, 0x06, 0x1e, 0xb9, 0x43, 0x7c, 0x9e, 0x97, 0xc5, 0x09, 0x08,
0xbc, 0x22, 0x47, 0xe2, 0x96, 0x8e, 0x1c, 0x74, 0x80, 0x50, 0x6c, 0x9f,
0xef, 0x2f, 0xe5, 0x06, 0x3e, 0x73, 0x66, 0x76, 0x02, 0xbd, 0x9a, 0x1c,
0xfc, 0xf9, 0x6a, 0xb8, 0xf9, 0x36, 0x15, 0xb5, 0x20, 0x0b, 0x6b, 0x54,
0x83, 0x9c, 0x86, 0xba, 0x13, 0xb7, 0x99, 0x54, 0xa0, 0x93, 0x0d, 0xd6,
0x1e, 0xc1, 0x12, 0x72, 0x0d, 0xea, 0xb0, 0x14, 0x30, 0x70, 0x73, 0xef,
0x6b, 0x4c, 0xae, 0xb6, 0xff, 0xd4, 0xbb, 0x89, 0xa1, 0xec, 0xca, 0xa6,
0xe9, 0x95, 0x56, 0xac, 0xe2, 0x9b, 0x97, 0x2f, 0x2c, 0xdf, 0xa3, 0x6e,
0x59, 0xff, 0xcd, 0x3c, 0x6f, 0x57, 0xcc, 0x6e, 0x44, 0xc4, 0x27, 0xbf,
0xc3, 0xdd, 0x19, 0x9e, 0x81, 0x16, 0xe2, 0x8f, 0x65, 0x34, 0xa7, 0x0f,
0x22, 0xba, 0xbf, 0x79, 0x57, 0x02, 0x81, 0x80, 0x2e, 0x21, 0x0e, 0xc9,
0xb5, 0xad, 0x31, 0xd4, 0x76, 0x0f, 0x9b, 0x0f, 0x2e, 0x70, 0x33, 0x54,
0x03, 0x58, 0xa7, 0xf1, 0x6d, 0x35, 0x57, 0xbb, 0x53, 0x66, 0xb4, 0xb6,
0x96, 0xa1, 0xea, 0xd9, 0xcd, 0xe9, 0x23, 0x9f, 0x35, 0x17, 0xef, 0x5c,
0xb8, 0x59, 0xce, 0xb7, 0x3c, 0x35, 0xaa, 0x42, 0x82, 0x3f, 0x00, 0x96,
0xd5, 0x9d, 0xc7, 0xab, 0xec, 0xec, 0x04, 0xb5, 0x15, 0xc8, 0x40, 0xa4,
0x85, 0x9d, 0x20, 0x56, 0xaf, 0x03, 0x8f, 0x17, 0xb0, 0xf1, 0x96, 0x22,
0x3a, 0xa5, 0xfa, 0x58, 0x3b, 0x01, 0xf9, 0xae, 0xb3, 0x83, 0x6f, 0x44,
0xd3, 0x14, 0x2d, 0xb6, 0x6e, 0xd2, 0x9d, 0x39, 0x0c, 0x12, 0x1d, 0x23,
0xea, 0x19, 0xcb, 0xbb, 0xe0, 0xcd, 0x89, 0x15, 0x9a, 0xf5, 0xe4, 0xec,
0x41, 0x06, 0x30, 0x16, 0x58, 0xea, 0xfa, 0x31, 0xc1, 0xb8, 0x8e, 0x08,
0x84, 0xaa, 0x3b, 0x19, 0x02, 0x81, 0x80, 0x70, 0x4c, 0xf8, 0x6e, 0x86,
0xed, 0xd6, 0x85, 0xd4, 0xba, 0xf4, 0xd0, 0x3a, 0x32, 0x2d, 0x40, 0xb5,
0x78, 0xb8, 0x5a, 0xf9, 0xc5, 0x98, 0x08, 0xe5, 0xc0, 0xab, 0xb2, 0x4c,
0x5c, 0xa2, 0x2b, 0x46, 0x9b, 0x3e, 0xe0, 0x0d, 0x49, 0x50, 0xbf, 0xe2,
0xa1, 0xb1, 0x86, 0x59, 0x6e, 0x7b, 0x76, 0x6e, 0xee, 0x3b, 0xb6, 0x6d,
0x22, 0xfb, 0xb1, 0x68, 0xc7, 0xec, 0xb1, 0x95, 0x9b, 0x21, 0x0b, 0xb7,
0x2a, 0x71, 0xeb, 0xa2, 0xb2, 0x58, 0xac, 0x6d, 0x5f, 0x24, 0xd3, 0x79,
0x42, 0xd2, 0xf7, 0x35, 0xdc, 0xfc, 0x0e, 0x95, 0x60, 0xb7, 0x85, 0x7f,
0xf9, 0x72, 0x8e, 0x4a, 0x11, 0xc3, 0xc2, 0x09, 0x40, 0x5c, 0x7c, 0x43,
0x12, 0x34, 0xac, 0x59, 0x99, 0x76, 0x34, 0xcf,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 345

Chapter 6: Design Considerations

0x20, 0x88, 0xb0, 0xfb, 0x39, 0x62, 0x3a, 0x9b, 0x03, 0xa6, 0x84, 0x2c,
0x03, 0x5c, 0x0c, 0xca, 0x33, 0x85, 0xf5, 0x02, 0x81, 0x80, 0x56,
0x99, 0xe9, 0x17, 0xdc, 0x33, 0xe1, 0x33, 0x8d, 0x5c, 0xba, 0x17, 0x32,
0xb7, 0x8c, 0xbd, 0x4b, 0x7f, 0x42, 0x3a, 0x79, 0x90, 0xe3, 0x70,
0xe3, 0x27, 0xce, 0x22, 0x59, 0x02, 0xc0, 0xb1, 0x0e, 0x57, 0xf5, 0xdf,
0x07, 0xbf, 0xf8, 0x4e, 0x10, 0xef, 0x2a, 0x62, 0x30, 0x03, 0xd4,
0x80, 0xcf, 0x20, 0x84, 0x25, 0x66, 0x3f, 0xc7, 0x4f, 0x56, 0x8c, 0x1e,
0xe1, 0x18, 0x91, 0xc1, 0xfd, 0x71, 0x5f, 0x65, 0x9b, 0xe4, 0x4f,
0xe0, 0x1a, 0x3a, 0xf8, 0xc1, 0x69, 0xdb, 0xd3, 0xbb, 0x8d, 0x91, 0xd1,
0x11, 0x4f, 0x7e, 0x91, 0x1b, 0xb4, 0x27, 0xa5, 0xab, 0x7c, 0x7b,
0x76, 0xd4, 0x78, 0xfe, 0x63, 0x44, 0x63, 0x7e, 0xe3, 0xa6, 0x60, 0x4f,
0xb9, 0x55, 0x28, 0xba, 0xba, 0x83, 0x1a, 0x2d, 0x43, 0xd5, 0xf7,
0x2e, 0xe0, 0xfc, 0xa8, 0x14, 0x9b, 0x91, 0x2a, 0x36, 0xbf, 0xc7, 0x14
The example above contains the exponent, the modulus, and private key material.

Other Formats of KeyMaterial
The format of key material depends on the application, and is therefore unpredictable. Key material commonly
exists in any of the following formats; ASN1, PEM, P12, PFX, etc. Key material in those formats, or in another
format, can likely be re-formatted to be acceptable for moving onto the SafeNet Luna Network HSM.

Sample Program
The sample program below encrypts a known RSA private key, then unwraps the key pair onto the SafeNet
Luna Network HSM Partition.
/**\
*
* File: UnwrapKey.cpp*
* Encrypts a PrivateKeyInfo structure with a generated DES
key and then
* unwraps the RSA key onto a token.
*
* This file is provided as an example only.
*
*
* Copyright (C) 2017, Gemalto, Inc.
*
* All rights reserved. This file contains information that
is
* proprietary to SafeNet, Inc. and may not be
* distributed or copied without written consent from
* SafeNet, Inc.
*
**/
#ifdef UNIX
#define _POSIX_SOURCE 1
#endif
#ifdef USING_STATIC_CHRYSTOKI
define STATIC ckdemo_cpp
#endif
#include <assert.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <time.h>

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 346

Chapter 6: Design Considerations

#ifdef _WINDOWS
#include <conio.h>
#include <io.h>
#include <windows.h>
#endif
#ifdef UNIX
#include <unistd.h>
#endif
#include "source/cryptoki.h"
#include "source/Ckbridge.h"
#define DIM(a) (sizeof(a)/sizeof(a[0]))
CK_BBOOL no = FALSE;
CK_BBOOL yes = TRUE;
const int MAX =100;
// Function Prototypes
CK_RV Pinlogin(CK_SESSION_HANDLE
hSession);
int getPinString(CK_CHAR_PTR pw);
// Main
int main(void)
{
 int
 error
= 0;
 CK_RV
 retCode
= CKR_OK;
 CK_SESSION_HANDLE
hSessionHandle;
 CK_CHAR_PTR
 userPIN
= (CK_CHAR_PTR)"default";
 CK_USHORT
 lenuserPIN
 = 7;
 CK_CHAR_PTR
 soPIN
= (CK_CHAR_PTR)"default";
 CK_USHORT
 lensoPIN
= 7;
 CK_USHORT
 usNumberOfSlots;
 CK_SLOT_ID_PTR
 pSlotList;
 CK_OBJECT_HANDLE
hKey;
 CK_MECHANISM
mech;
 CK_VERSION
version;
 struct

{
 CK_INFO
info;
 char
reserved[100]; // This is in case the library that we are
 //
talking to requires a larger info structure
 //
then the one defined.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 347

Chapter 6: Design Considerations

 }
protectedInfo;
//Disclaimer
 cout
<< "\n\n\n\n";
cout << "THE SOFTWARE IS PROVIDED BY SAFENET INCORPORATED
(SAFENET) ON AN 'AS IS' BASIS, \n";
cout << "WITHOUT ANY OTHER WARRANTIES OR CONDITIONS,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED \n";
cout << "TO, WARRANTIES OF MERCHANTABLE QUALITY,
SATISFACTORY QUALITY, MERCHANTABILITY OR FITNESS FOR\n";
cout << "A PARTICULAR PURPOSE, OR THOSE ARISING
BY LAW, STATUTE, USAGE OF TRADE, COURSE OF DEALING OR\n";
cout << "OTHERWISE. SAFENET
DOES NOT WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR \n";
cout << "THAT OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED OR THAT THE SOFTWARE WILL BE ERROR-FREE.\n";
cout << "YOU ASSUME THE ENTIRE RISK AS TO THE
RESULTS AND PERFORMANCE OF THE SOFTWARE. NEITHER
\n";
cout << "SAFENET NOR OUR LICENSORS, DEALERS OR
SUPPLIERS SHALL HAVE ANY LIABILITY TO YOU OR ANY\n";
cout << "OTHER PERSON OR ENTITY FOR ANY INDIRECT,
INCIDENTAL, SPECIAL, CONSEQUENTIAL, PUNITIVE, \n";
cout << "EXEMPLARY OR AY OTHER DAMAGES WHATSOEVER,
INCLUDING, BUT NOT LIMITED TO, LOSS OF REVENUE OR \n";
cout << "PROFIT, LOST OR DAMAGED DATA, LOSS OF
USE OR OTHER COMMERCIAL OR ECONOMIC LOSS, EVEN IF \n";
cout << "SAFENET HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES, OR THEY ARE FORESEEABLE. \n";
cout << "SAFENET IS ALSO NOT RESPONSIBLE FOR CLAIMS
BY A THIRD PARTY. THE
MAXIMUM AGGREGATE \n";
cout << "LIABILITY OF SAFENET TO YOU AND THAT
OF SAFENET’S LICENSORS, DEALERS AND SUPPLIERS \n";
cout << "SHALL NOT EXCEED FORTY DOLLARS ($40.00CDN).
 THE LIMITATIONS
IN THIS SECTION SHALL APPLY \n";
cout << "WHETHER OR NOT THE ALLEGED BREACH OR
DEFAULT IS A BREACH OF A FUNDAMENTAL CONDITION OR TERM \n";
cout << "OR A FUNDAMENTAL BREACH. SOME
STATES/COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF\n";
cout << "LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SO THE ABOVE LIMITATION MAY NOT APPLY TO \n";
cout << "YOU.\n";
cout << "THE LIMITED WARRANTY, EXCLUSIVE REMEDIES
AND LIMITED LIABILITY SET OUT HEREIN ARE FUNDAMENTAL \n";
cout << "ELEMENTS OF THE BASIS OF THE BARGAIN
BETWEEN YOU AND SAFENET. \n";
cout << "NO SUPPORT. YOU
ACKNOWLEDGE AND AGREE THAT THERE ARE NO SUPPORT SERVICES PROVIDED BY SAFENET\n";
cout << "INCORPORATED FOR THIS SOFTWARE\n"
<< endl;
 //
Display Generic Warning
 cout
<< "\nInsert a token for the test...";
 cout
<< "\n\nWARNING!!! This test initializes the first ";

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 348

Chapter 6: Design Considerations

 cout
<< " token detected in the card reader.";
 cout
<< "\nDo not use a token that you don't want erased.";
 cout
<< "\nYou can use CTRL-C to abort now...Otherwise...";
 cout
<< "\n\n... press <Enter> key to continue ...\n";
 cout.flush();
 getchar();
// Wait for keyboard hit
#ifndef STATIC
 //
Connect to Chrystoki
if(!CrystokiConnect())
{
cout << "\n" "Unable to connect to Chrystoki.
 Error =
" << LibError() << "\n";
error = -1;
 goto
exit_routine_1;
}
#endif
 //
Verify this is the version of the library required
 retCode
= C_GetInfo(&protectedInfo.info);
 if(
retCode != CKR_OK)
{

 cout
<< endl << "Unable to call C_GetInfo() before C_Initialize()\n";
error = -2;
 goto
exit_routine_2;
 }
 else

{
 CK_BYTE
majorVersion = protectedInfo.info.version.major;
 CK_BYTE
expectedVersion;
#ifndef PKCS11_2_0
 expectedVersion
= 1;
#else
 expectedVersion
= 2;
#endif
 if(
expectedVersion != majorVersion)

{
 cout
<< endl << "This version of the program was built for
Cryptoki version "
 <<
(int)expectedVersion << ".\n"
 <<
"The loaded Cryptoki library reports its version to be "

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 349

Chapter 6: Design Considerations

 <<
(int)majorVersion << ".\n"
 <<
"Program will terminate.\n";
 //
Wait to exit until user read message and acknowledges
 cout
<< endl << "Press <Enter> key to end.";
 getchar();
// Wait for keyboard hit
 error
= -3;
 goto
exit_routine_2;
 }
 }
 //
Initialize the Library
retCode = C_Initialize(NULL);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " initializing cryptoki.\n";
error = -4;
 goto
exit_routine_3;
}
// Get the number of tokens possibly available
retCode = C_GetSlotList(TRUE, NULL, &usNumberOfSlots);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " getting slot list.\n";
error = -5;
 goto
exit_routine_3;
}
// Are any tokens present?
if(usNumberOfSlots == 0)
{
cout << "\n" "No tokens found\n";
error = -6;
 goto
exit_routine_3;
 }
 //
Get a list of slots
pSlotList = new CK_SLOT_ID[usNumberOfSlots];
retCode = C_GetSlotList(TRUE, pSlotList, &usNumberOfSlots);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " getting slot list.\n";
error = -7;
 goto
exit_routine_4;
}
 //
Open a session
retCode = C_OpenSession(pSlotList[0], CKF_RW_SESSION | CKF_SERIAL_SESSION,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 350

Chapter 6: Design Considerations

 NULL,
NULL, &hSessionHandle);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " opening session.\n";
error = -9;
 goto
exit_routine_4;
}
Pinlogin(hSessionHandle);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " Calling PinLogin fn";
exit(hSessionHandle);
}
 //
Encrypt an RSA Key and then unwrap it onto the token
{

 //
The following is an RSA Key that is formatted as a PrivateKeyInfo structure
 //BER
encoded format
 const
CK_BYTE pRsaKey[] = {
 0x30,
0x82, 0x04, 0xbc, 0x02, 0x01, 0x00, 0x30, 0x0d, 0x06, 0x09, 0x2a, 0x86,
0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01,
0x01, 0x05, 0x00, 0x04,
 0x82,
0x04, 0xa6, 0x30, 0x82, 0x04, 0xa2, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01,
0x01, 0x00, 0xb8, 0xb5, 0x0f, 0x49,
0x46, 0xb5, 0x5d, 0x58,
 0x04,
0x8e, 0x52, 0x59, 0x39, 0xdf, 0xd6, 0x29, 0x45, 0x6b, 0x6c, 0x96, 0xbb,
0xab, 0xa5, 0x6f, 0x72, 0x1b, 0x16,
0x96, 0x74, 0xd5, 0xf9,
 0xb4,
0x41, 0xa3, 0x7c, 0xe1, 0x94, 0x73, 0x4b, 0xa7, 0x23, 0xff, 0x61, 0xeb,
0xce, 0x5a, 0xe7, 0x7f, 0xe3, 0x74,
0xe8, 0x52, 0x5b, 0xd6,
 0x5d,
0x5c, 0xdc, 0x98, 0x49, 0xfe, 0x51, 0xc2, 0x7e, 0x8f, 0x3b, 0x37, 0x5c,
0xb3, 0x11, 0xed, 0x85, 0x91, 0x15,
0x92, 0x24, 0xd8, 0xf1,
 0x7b,
0x3d, 0x2f, 0x8b, 0xcd, 0x1b, 0x30, 0x14, 0xa3, 0x6b, 0x1b, 0x4d, 0x27,
0xff, 0x6a, 0x58, 0x84, 0x9e, 0x79,
0x94, 0xca, 0x78, 0x64,
 0x01,
0x33, 0xc3, 0x58, 0xfc, 0xd3, 0x83, 0xeb, 0x2f, 0xab, 0x6f, 0x85, 0x5a,
0x38, 0x41, 0x3d, 0x73, 0x20, 0x1b,
0x82, 0xbc, 0x7e, 0x76,
 0xde,
0x5c, 0xfe, 0x42, 0xd6, 0x7b, 0x86, 0x4f, 0x79, 0x78, 0x29, 0x82, 0x87,
0xa6, 0x24, 0x43, 0x39, 0x74, 0xfe,
0xf2, 0x0c, 0x08, 0xbe,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 351

Chapter 6: Design Considerations

 0xfa,
0x1e, 0x0a, 0x48, 0x6f, 0x14, 0x86, 0xc5, 0xcd, 0x9a, 0x98, 0x09, 0x2d,
0xf3, 0xf3, 0x5a, 0x7a, 0xa4, 0xe6,
0x8a, 0x2e, 0x49, 0x8a, 0xde, 0x73, 0xe9, 0x37, 0xa0, 0x5b,
0xef,
 0xd0,
0xe0, 0x13, 0xac, 0x88, 0x5f, 0x59, 0x47, 0x96, 0x7f, 0x78, 0x18, 0x0e,
0x44, 0x6a, 0x5d, 0xec, 0x6e, 0xed,
0x4f, 0xf6, 0x6a, 0x7a,
 0x58,
0x6b, 0xfe, 0x6c, 0x5a, 0xb9, 0xd2, 0x22, 0x3a, 0x1f, 0xdf, 0xc3, 0x09,
0x3f, 0x6b, 0x2e, 0xf1, 0x6d, 0xc3,
0xfb, 0x4e, 0xd4, 0xf2,
 0xa3,
0x94, 0x13, 0xb0, 0xbf, 0x1e, 0x06, 0x2e, 0x29, 0x55, 0x00, 0xaa, 0x98,
0xd9, 0xe8, 0x77, 0x84, 0x8b, 0x3f,
0x5f, 0x5e, 0xf7, 0xf8,
 0xa7,
0xe6, 0x02, 0xd2, 0x18, 0xb0, 0x52, 0xd0, 0x37, 0x2e, 0x53, 0x02, 0x03,
0x01, 0x00, 0x01, 0x02, 0x82, 0x01,
0x00, 0x0c, 0xdf, 0xd1,
 0xe8,
0xf1, 0x9c, 0xc2, 0x9c, 0xd7, 0xf4, 0x73, 0x98, 0xf4, 0x87, 0xbd, 0x8d,
0xb2, 0xe1, 0x01, 0xf8, 0x9f, 0xac,
0x1f, 0x23, 0xdd, 0x78,
 0x35,
0xe2, 0xd6, 0xd1, 0xf3, 0x4d, 0xb5, 0x25, 0x88, 0x16, 0xd1, 0x1a, 0x18,
0x33, 0xd6, 0x36, 0x7e, 0xc4, 0xc8,
0xe5, 0x5d, 0x2d, 0x74,
 0xd5,
0x39, 0x3c, 0x44, 0x5a, 0x74, 0xb7, 0x7c, 0x48, 0xc1, 0x1f, 0x90, 0xe3,
0x55, 0x9e, 0xf6, 0x29, 0xad, 0xb4,
0x6d, 0x93, 0x78, 0xb3,
 0xdc,
0x25, 0x0b, 0x9c, 0x73, 0x78, 0x7b, 0x93, 0x4c, 0xd3, 0x47, 0x09, 0xda,
0xe6, 0x69, 0x18, 0xc6, 0x0f, 0xfb,
0xa5, 0x95, 0xf5, 0xe8,
 0x75,
0xe1, 0x01, 0x1b, 0xd3, 0x1c, 0xa2, 0x57, 0x03, 0x64, 0xdb, 0xf9, 0x5d,
0xf3, 0x3c, 0xa7, 0xd1, 0x4b, 0xb0,
0x90, 0x1b, 0x90, 0x62,
 0xb4,
0x88, 0x30, 0x4b, 0x40, 0x4d, 0xcf, 0x7d, 0x89, 0x7a, 0xfb, 0x29, 0xc9,
0x64, 0x34, 0x0a, 0x52, 0xf6, 0x70,
0x7c, 0x76, 0x5a, 0x2e,
 0x8f,
0x50, 0xd4, 0x92, 0x15, 0x97, 0xed, 0x4c, 0x2e, 0xf2, 0x3a, 0xd0, 0x58,
0x7e, 0xdb, 0xf1, 0xf4, 0xdd, 0x07,
0x76, 0x04, 0xf0, 0x55,
 0x8b,
0x72, 0x2b, 0xa7, 0xa8, 0x78, 0x78, 0x67, 0xe6, 0xd8, 0xa5, 0xde, 0xe7,
0xc9, 0x1f, 0x5a, 0xa0, 0x89, 0xc7,
0x24, 0xa2, 0x71, 0xb6,
 0x7b,
0x3b, 0xe6, 0x92, 0x69, 0x22, 0xaa, 0xe2, 0x47, 0x4b, 0x80, 0x3f, 0x6a,
0xab, 0xce, 0x4e, 0xcd, 0xe8, 0x94,
0x6c, 0xf7, 0x84, 0x73,
 0x85,
0xfd, 0x85, 0x1d, 0xae, 0x81, 0xf7, 0xec, 0x12, 0x31, 0x7d, 0xc1, 0x99,
0xc0, 0x3c, 0x51, 0xb0, 0xdc, 0xb0,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 352

Chapter 6: Design Considerations

0xba, 0x9c, 0x84, 0xb8,
 0x70,
0xc2, 0x09, 0x7f, 0x96, 0x3d, 0xa1, 0xe2, 0x64, 0x27, 0x7a, 0x22, 0xb8,
0x75, 0xb9, 0xd1, 0x5f, 0xa5, 0x23,
0xf9, 0x62, 0xe0, 0x41,
 0x02,
0x81, 0x81, 0x00, 0xf4, 0xf3, 0x08, 0xcf, 0x83, 0xb0, 0xab, 0xf2, 0x0f,
0x1a, 0x08, 0xaf, 0xc2, 0x42, 0x29,
0xa7, 0x9c, 0x5e, 0x52,
 0x19,
0x69, 0x8d, 0x5b, 0x52, 0x29, 0x9c, 0x06, 0x6a, 0x5a, 0x32, 0x8f, 0x08,
0x45, 0x6c, 0x43, 0xb5, 0xac, 0xc3,
0xbb, 0x90, 0x7b, 0xec,
 0xbb,
0x5d, 0x71, 0x25, 0x82, 0xf8, 0x40, 0xbf, 0x38, 0x00, 0x20, 0xf3, 0x8a,
0x38, 0x43, 0xde, 0x04, 0x41, 0x19,
0x5f, 0xeb, 0xb0, 0x50,
 0x59,
0x10, 0xe1, 0x54, 0x62, 0x5c, 0x93, 0xd9, 0xdc, 0x63, 0x24, 0xd0, 0x17,
0x00, 0xc0, 0x44, 0x3e, 0xfc, 0xd1,
0xda, 0x4b, 0x24, 0xf7,
 0xcb,
0x16, 0x35, 0xe6, 0x9f, 0x67, 0x96, 0x5f, 0xb0, 0x94, 0xde, 0xfa, 0xa1,
0xfd, 0x8c, 0x8a, 0xd1, 0x5c, 0x02,
0x8d, 0xe0, 0xa0, 0xa0,
 0x02,
0x1d, 0x56, 0xaf, 0x13, 0x3a, 0x65, 0x5e, 0x8e, 0xde, 0xd1, 0xa8, 0x28,
0x8b, 0x71, 0xc9, 0x65, 0x02, 0x81,
0x81, 0x00, 0xc1, 0x0a,
 0x47,
0x39, 0x91, 0x06, 0x1e, 0xb9, 0x43, 0x7c, 0x9e, 0x97, 0xc5, 0x09, 0x08,
0xbc, 0x22, 0x47, 0xe2, 0x96, 0x8e,
0x1c, 0x74, 0x80, 0x50,
 0x6c,
0x9f, 0xef, 0x2f, 0xe5, 0x06, 0x3e, 0x73, 0x66, 0x76, 0x02, 0xbd, 0x9a,
0x1c, 0xfc, 0xf9, 0x6a, 0xb8, 0xf9,
0x36, 0x15, 0xb5, 0x20,
 0x0b,
0x6b, 0x54, 0x83, 0x9c, 0x86, 0xba, 0x13, 0xb7, 0x99, 0x54, 0xa0, 0x93,
0x0d, 0xd6, 0x1e, 0xc1, 0x12, 0x72,
0x0d, 0xea, 0xb0, 0x14,
 0x30,
0x70, 0x73, 0xef, 0x6b, 0x4c, 0xae, 0xb6, 0xff, 0xd4, 0xbb, 0x89, 0xa1,
0xec, 0xca, 0xa6, 0xe9, 0x95, 0x56,
0xac, 0xe2, 0x9b, 0x97,
 0x2f,
0x2c, 0xdf, 0xa3, 0x6e, 0x59, 0xff, 0xcd, 0x3c, 0x6f, 0x57, 0xcc, 0x6e,
0x44, 0xc4, 0x27, 0xbf, 0xc3, 0xdd,
0x19, 0x9e, 0x81, 0x16,
 0xe2,
0x8f, 0x65, 0x34, 0xa7, 0x0f, 0x22, 0xba, 0xbf, 0x79, 0x57, 0x02, 0x81,
0x80, 0x2e, 0x21, 0x0e, 0xc9, 0xb5,
0xad, 0x31, 0xd4, 0x76,
 0x0f,
0x9b, 0x0f, 0x2e, 0x70, 0x33, 0x54, 0x03, 0x58, 0xa7, 0xf1, 0x6d, 0x35,
0x57, 0xbb, 0x53, 0x66, 0xb4, 0xb6,
0x96, 0xa1, 0xea, 0xd9,
 0xcd,
0xe9, 0x23, 0x9f, 0x35, 0x17, 0xef, 0x5c, 0xb8, 0x59, 0xce, 0xb7, 0x3c,
0x35, 0xaa, 0x42, 0x82, 0x3f, 0x00,

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 353

Chapter 6: Design Considerations

0x96, 0xd5, 0x9d, 0xc7,
 0xab,
0xec, 0xec, 0x04, 0xb5, 0x15, 0xc8, 0x40, 0xa4, 0x85, 0x9d, 0x20, 0x56,
0xaf, 0x03, 0x8f, 0x17, 0xb0, 0xf1,
0x96, 0x22, 0x3a, 0xa5,
 0xfa,
0x58, 0x3b, 0x01, 0xf9, 0xae, 0xb3, 0x83, 0x6f, 0x44, 0xd3, 0x14, 0x2d,
0xb6, 0x6e, 0xd2, 0x9d, 0x39, 0x0c,
0x12, 0x1d, 0x23, 0xea,
 0x19,
0xcb, 0xbb, 0xe0, 0xcd, 0x89, 0x15, 0x9a, 0xf5, 0xe4, 0xec, 0x41, 0x06,
0x30, 0x16, 0x58, 0xea, 0xfa, 0x31,
0xc1, 0xb8, 0x8e, 0x08,
 0x84,
0xaa, 0x3b, 0x19, 0x02, 0x81, 0x80, 0x70, 0x4c, 0xf8, 0x6e, 0x86, 0xed,
0xd6, 0x85, 0xd4, 0xba, 0xf4, 0xd0,
0x3a, 0x32, 0x2d, 0x40,
 0xb5,
0x78, 0xb8, 0x5a, 0xf9, 0xc5, 0x98, 0x08, 0xe5, 0xc0, 0xab, 0xb2, 0x4c,
0x5c, 0xa2, 0x2b, 0x46, 0x9b, 0x3e,
0xe0, 0x0d, 0x49, 0x50,
 0xbf,
0xe2, 0xa1, 0xb1, 0x86, 0x59, 0x6e, 0x7b, 0x76, 0x6e, 0xee, 0x3b, 0xb6,
0x6d, 0x22, 0xfb, 0xb1, 0x68, 0xc7,
0xec, 0xb1, 0x95, 0x9b,
 0x21,
0x0b, 0xb7, 0x2a, 0x71, 0xeb, 0xa2, 0xb2, 0x58, 0xac, 0x6d, 0x5f, 0x24,
0xd3, 0x79, 0x42, 0xd2, 0xf7, 0x35,
0xdc, 0xfc, 0x0e, 0x95,
 0x60,
0xb7, 0x85, 0x7f, 0xf9, 0x72, 0x8e, 0x4a, 0x11, 0xc3, 0xc2, 0x09, 0x40,
0x5c, 0x7c, 0x43, 0x12, 0x34, 0xac,
0x59, 0x99, 0x76, 0x34,
 0xcf,
0x20, 0x88, 0xb0, 0xfb, 0x39, 0x62, 0x3a, 0x9b, 0x03, 0xa6, 0x84, 0x2c,
0x03, 0x5c, 0x0c, 0xca, 0x33, 0x85,
0xf5, 0x02, 0x81, 0x80,
 0x56,
0x99, 0xe9, 0x17, 0xdc, 0x33, 0xe1, 0x33, 0x8d, 0x5c, 0xba, 0x17, 0x32,
0xb7, 0x8c, 0xbd, 0x4b, 0x7f, 0x42,
0x3a, 0x79, 0x90, 0xe3,
 0x70,
0xe3, 0x27, 0xce, 0x22, 0x59, 0x02, 0xc0, 0xb1, 0x0e, 0x57, 0xf5, 0xdf,
0x07, 0xbf, 0xf8, 0x4e, 0x10, 0xef,
0x2a, 0x62, 0x30, 0x03,
 0xd4,
0x80, 0xcf, 0x20, 0x84, 0x25, 0x66, 0x3f, 0xc7, 0x4f, 0x56, 0x8c, 0x1e,
0xe1, 0x18, 0x91, 0xc1, 0xfd, 0x71,
0x5f, 0x65, 0x9b, 0xe4,
 0x4f,
0xe0, 0x1a, 0x3a, 0xf8, 0xc1, 0x69, 0xdb, 0xd3, 0xbb, 0x8d, 0x91, 0xd1,
0x11, 0x4f, 0x7e, 0x91, 0x1b, 0xb4,
0x27, 0xa5, 0xab, 0x7c,
 0x7b,
0x76, 0xd4, 0x78, 0xfe, 0x63, 0x44, 0x63, 0x7e, 0xe3, 0xa6, 0x60, 0x4f,
0xb9, 0x55, 0x28, 0xba, 0xba, 0x83,
0x1a, 0x2d, 0x43, 0xd5,
 0xf7,
0x2e, 0xe0, 0xfc, 0xa8, 0x14, 0x9b, 0x91, 0x2a, 0x36, 0xbf, 0xc7, 0x14
 };

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 354

Chapter 6: Design Considerations

CK_BYTE
 knownRSA1Modulus[]
= {
0xb8, 0xb5, 0x0f, 0x49, 0x46, 0xb5, 0x5d, 0x58, 0x04, 0x8e,
0x52, 0x59, 0x39, 0xdf, 0xd6,
0x29,
0x45, 0x6b, 0x6c, 0x96, 0xbb, 0xab, 0xa5, 0x6f, 0x72, 0x1b,
0x16, 0x96, 0x74, 0xd5, 0xf9,
0xb4,
0x41, 0xa3, 0x7c, 0xe1, 0x94, 0x73, 0x4b, 0xa7, 0x23, 0xff,
0x61, 0xeb, 0xce, 0x5a, 0xe7,
0x7f,
0xe3, 0x74, 0xe8, 0x52, 0x5b, 0xd6, 0x5d, 0x5c, 0xdc, 0x98,
0x49, 0xfe, 0x51, 0xc2, 0x7e,
0x8f,
0x3b, 0x37, 0x5c, 0xb3, 0x11, 0xed, 0x85, 0x91, 0x15, 0x92,
0x24, 0xd8, 0xf1, 0x7b, 0x3d,
0x2f,
0x8b, 0xcd, 0x1b, 0x30, 0x14, 0xa3, 0x6b, 0x1b, 0x4d, 0x27,
0xff, 0x6a, 0x58, 0x84, 0x9e,
0x79,
0x94, 0xca, 0x78, 0x64, 0x01, 0x33, 0xc3, 0x58, 0xfc, 0xd3,
0x83, 0xeb, 0x2f, 0xab, 0x6f,
0x85,
0x5a, 0x38, 0x41, 0x3d, 0x73, 0x20, 0x1b, 0x82, 0xbc, 0x7e,
0x76, 0xde, 0x5c, 0xfe, 0x42,
0xd6,
0x7b, 0x86, 0x4f, 0x79, 0x78, 0x29, 0x82, 0x87, 0xa6, 0x24,
0x43, 0x39, 0x74, 0xfe, 0xf2,
0x0c,
0x08, 0xbe, 0xfa, 0x1e, 0x0a, 0x48, 0x6f, 0x14, 0x86, 0xc5,
0xcd, 0x9a, 0x98, 0x09, 0x2d,
0xf3,
0xf3, 0x5a, 0x7a, 0xa4, 0xe6, 0x8a, 0x2e, 0x49, 0x8a, 0xde,
0x73, 0xe9, 0x37, 0xa0, 0x5b,
0xef,
0xd0, 0xe0, 0x13, 0xac, 0x88, 0x5f, 0x59, 0x47, 0x96, 0x7f,
0x78, 0x18, 0x0e, 0x44, 0x6a,
0x5d,
0xec, 0x6e, 0xed, 0x4f, 0xf6, 0x6a, 0x7a, 0x58, 0x6b, 0xfe,
0x6c, 0x5a, 0xb9, 0xd2, 0x22,
0x3a,
0x1f, 0xdf, 0xc3, 0x09, 0x3f, 0x6b, 0x2e, 0xf1, 0x6d, 0xc3,
0xfb, 0x4e, 0xd4, 0xf2, 0xa3,
0x94,
0x13, 0xb0, 0xbf, 0x1e, 0x06, 0x2e, 0x29, 0x55, 0x00, 0xaa,
0x98, 0xd9, 0xe8, 0x77, 0x84,
0x8b,
0x3f, 0x5f, 0x5e, 0xf7, 0xf8, 0xa7, 0xe6, 0x02, 0xd2, 0x18,
0xb0, 0x52, 0xd0, 0x37, 0x2e,
0x53,
 },
 knownRSA1PubExponent[]
= { 0x01, 0x00, 0x01 };
 char
*pPlainData = 0;
 unsigned
long ulPlainDataLength;
 char
*pEncryptedData = 0;

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 355

Chapter 6: Design Considerations

 unsigned
long ulEncryptedDataLength = 0;
 CK_MECHANISM
mech;
 CK_USHORT
 usStatus=0,
 usKeyLength;
 CK_OBJECT_HANDLE
hKey;
 CK_OBJECT_CLASS
 SymKeyClass
 = CKO_SECRET_KEY;
 CK_BBOOL
 bTrue
= 1,
 bFalse
= 0,
 bToken
= bTrue,
 bSensitive
= bTrue,
 bPrivate
= bTrue,
 bEncrypt
= bTrue,
 bDecrypt
= bTrue,
 bSign
= bFalse, // "..."
 bVerify
= bFalse, //Will not allow sign/verify operation.
 bWrap
= bTrue,
 bUnwrap
= bTrue,
#ifdef EXTRACTABLE
 bExtract
= bTrue,
#endif //EXTRACTABLE
 bDerive
= bTrue;
 CK_KEY_TYPE
 keyType;
 CK_USHORT
 usValueBits;
 char
 pbPublicKeyLabel[128];
 CK_ATTRIBUTE_PTR
pPublicTemplate;
 CK_USHORT
usPublicTemplateSize = 0;
 char
iv[8] = { '1', '2', '3', '4', '5', '6', '7', '8' };
 CK_ATTRIBUTE
SymKeyTemplate[] = {

{CKA_CLASS,
0, sizeof(SymKeyClass)},

{CKA_KEY_TYPE,
0, sizeof(keyType)},

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 356

Chapter 6: Design Considerations

{CKA_TOKEN,
0, sizeof(bToken)},

{CKA_SENSITIVE,
0, sizeof(bSensitive)},

{CKA_PRIVATE,
0, sizeof(bPrivate)},

{CKA_ENCRYPT,
0, sizeof(bEncrypt)},

{CKA_DECRYPT,
0, sizeof(bDecrypt)},

{CKA_SIGN,
0, sizeof(bSign)},

{CKA_VERIFY,
0, sizeof(bVerify)},

{CKA_WRAP,
0, sizeof(bWrap)},

{CKA_UNWRAP,
0, sizeof(bUnwrap)},

{CKA_DERIVE,
0, sizeof(bDerive)},

{CKA_VALUE_LEN,0,
 sizeof(usKeyLength)
},

{CKA_LABEL,
0, 0} //
Always keep last!!!
#ifdef EXTRACTABLE //Conditional
stuff must be at the end!!!!!

{CKA_EXTRACTABLE,
0, sizeof(bExtract)},
#endif //EXTRACTABLE
 };
 CK_OBJECT_HANDLE
hUnWrappedKey, hPublicRSAKey;
 char
 *pbWrappedKey;
 unsigned
long ulWrappedKeySize;
 CK_OBJECT_CLASS
 privateKey
= CKO_PRIVATE_KEY,
publicKey = CKO_PUBLIC_KEY;
 CK_KEY_TYPE
 rsaType
 =
CKK_RSA;
 CK_BYTE
 pLabel[]
 = "RSA
private Key",
pbPublicRSAKeyLabel[] = "RSA Public Key";
 CK_ATTRIBUTE
*pTemplate;
 CK_ULONG
 usTemplateSize,
ulPublicRSAKeyTemplateSize;
 CK_ATTRIBUTE
pPublicRSAKeyTemplate[] = {

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 357

Chapter 6: Design Considerations

{CKA_CLASS,
 0,
sizeof(publicKey) },

{CKA_KEY_TYPE,
0, sizeof(rsaType)
 },

{CKA_TOKEN,
 0,
 sizeof(bToken)
 },

{CKA_PRIVATE,
 0, sizeof(bPrivate)
 },

{CKA_ENCRYPT,
 0, sizeof(bEncrypt)
 },

{CKA_VERIFY,
 0,
 sizeof(bSign)
 },

{CKA_WRAP,
 0,
 sizeof(bWrap)
 },
{CKA_MODULUS,
0, sizeof(knownRSA1Modulus) },
{CKA_PUBLIC_EXPONENT,
0, sizeof(knownRSA1PubExponent) },

{CKA_LABEL,
 0,
 sizeof(pbPublicRSAKeyLabel)
 }
 };
 CK_ATTRIBUTE
pPrivateKeyTemplate[] = {

{CKA_CLASS,
 &privateKey,
sizeof(privateKey) },

{CKA_KEY_TYPE,
&rsaType, sizeof(rsaType)
 },

{CKA_TOKEN,
 &bToken,
 sizeof(bToken)
 },

{CKA_SENSITIVE,&bSensitive,
sizeof(bSensitive) },

{CKA_PRIVATE,
 &bPrivate,
 sizeof(bPrivate)
 },

{CKA_DECRYPT,
 &bEncrypt,
 sizeof(bEncrypt)
 },

{CKA_SIGN,
 &bSign,
 sizeof(bSign)
 },

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 358

Chapter 6: Design Considerations

 //{CKA_SIGN_RECOVER,
&bTrue, sizeof(bTrue) },

{CKA_UNWRAP,
 &bWrap,
 sizeof(bWrap)
 },
{CKA_EXTRACTABLE, &bFalse, sizeof(bFalse) },
{CKA_LABEL, pLabel,
 sizeof(pLabel)
 }
 };
 //
Generate a DES3 Key
 SymKeyTemplate[0].pValue
= &SymKeyClass;
 SymKeyTemplate[1].pValue
= &keyType;
 SymKeyTemplate[2].pValue
= &bToken;
 SymKeyTemplate[3].pValue
= &bSensitive;
 SymKeyTemplate[4].pValue
= &bPrivate;
 SymKeyTemplate[5].pValue
= &bEncrypt;
 SymKeyTemplate[6].pValue
= &bDecrypt;
 SymKeyTemplate[7].pValue
= &bSign;
 SymKeyTemplate[8].pValue
= &bVerify;
 SymKeyTemplate[9].pValue
= &bWrap;
 SymKeyTemplate[10].pValue
= &bUnwrap;
 SymKeyTemplate[11].pValue
= &bDerive;
 SymKeyTemplate[12].pValue
= &usKeyLength;
 SymKeyTemplate[13].pValue
= pbPublicKeyLabel;
#ifdef EXTRACTABLE
 SymKeyTemplate[14].pValue
= &bExtract;
#endif //EXTRACTABLE
 mech.mechanism
= CKM_DES3_KEY_GEN;
 mech.pParameter
= 0;
 mech.usParameterLen
= 0;
 keyType
= CKK_DES3;
 usKeyLength
= 24;
 strcpy(
pbPublicKeyLabel, "Generated DES3 Key");
 pPublicTemplate
= SymKeyTemplate;

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 359

Chapter 6: Design Considerations

 usPublicTemplateSize
= DIM(SymKeyTemplate);
 //
Adjust size of label (ALWAYS LAST ENTRY IN ARRAY)
 pPublicTemplate[usPublicTemplateSize-1].usValueLen
= strlen(
pbPublicKeyLabel);
 retCode
= C_GenerateKey(hSessionHandle,

(CK_MECHANISM_PTR)&mech,
 pPublicTemplate,
 usPublicTemplateSize,
 &hKey);
 if(retCode
== CKR_OK)

{
 cout
<< pbPublicKeyLabel << ": " << hKey <<
endl;
 }
 else

{
 cout
<< "\n" "Error 0x" << hex << retCode;
 cout
<< " generating the DES3 Key.\n";
 error
= -11;
 goto
exit_routine_6;
 }
 //
Encrypt the RSA Key
 mech.mechanism
= CKM_DES3_CBC;
 mech.pParameter
= iv;
 mech.usParameterLen
= sizeof(iv);
 pPlainData
= (char *)(pRsaKey);
 ulPlainDataLength
= sizeof(pRsaKey);
 //
Allocate memory for output buffer
 if(
retCode == CKR_OK)

{
 pEncryptedData
= new char [ulPlainDataLength + 2048]; // Leave
// extra room for
// RSA Operations
 if(
!pEncryptedData)

{
 retCode
= CKR_DEVICE_ERROR;
 }
 }
 //
Start encrypting

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 360

Chapter 6: Design Considerations

 if(
retCode == CKR_OK)

{
 retCode
= C_EncryptInit(hSessionHandle, &mech, hKey);
 }
 //
Continue encrypting
 if(
retCode == CKR_OK)

{
 CK_USHORT
usInDataLen,
 usOutDataLen
= (CK_USHORT) (ulPlainDataLength + 2048);
 CK_ULONG
 ulBytesRemaining
= ulPlainDataLength;
 char
* pPlainTextPointer
= pPlainData;
 char
* pEncryptedDataPointer
= pEncryptedData;
 while
(ulBytesRemaining > 0)

{
 if
(ulBytesRemaining > 0xfff0) // We are longer than a USHORT can handle

{
 usInDataLen
= 0xfff0;
 ulBytesRemaining
-= usInDataLen;
 }
 else

{
 usInDataLen
= (CK_USHORT) ulBytesRemaining;
 ulBytesRemaining
-= usInDataLen;
 }
 retCode
= C_EncryptUpdate(hSessionHandle,

(CK_BYTE_PTR)pPlainTextPointer,
 usInDataLen,

(CK_BYTE_PTR)pEncryptedDataPointer,
 &usOutDataLen
);
 pPlainTextPointer
+= usInDataLen;
 pEncryptedDataPointer
+= usOutDataLen;
 ulEncryptedDataLength
+= usOutDataLen;
 }
 }

 //
Finish encrypting

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 361

Chapter 6: Design Considerations

 if(
retCode == CKR_OK)

{
 CK_USHORT
usOutDataLen;
 CK_BYTE_PTR
pOutData = (CK_BYTE_PTR)pEncryptedData;
 pOutData
+= ulEncryptedDataLength;
 retCode
= C_EncryptFinal(hSessionHandle, pOutData, &usOutDataLen);
 ulEncryptedDataLength
+= usOutDataLen;
 }
 else

{
 cout
<< "\n" "Error 0x" << hex << retCode;
 cout
<< " somewhere in the encrypting.\n";
 if(
pEncryptedData)

{
 delete
pEncryptedData;
 }
 error
= -12;
 goto
exit_routine_6;
 }
 mech.mechanism
 =
CKM_DES3_CBC;
 mech.pParameter
 =
(void*) "12345678"; // 8 byte IV
 mech.usParameterLen
= 8;
 pTemplate
= pPrivateKeyTemplate;
 usTemplateSize
= DIM(pPrivateKeyTemplate);
 pbWrappedKey
= pEncryptedData;
 ulWrappedKeySize
= ulEncryptedDataLength;
 if(
retCode == CKR_OK)

{
 retCode
= C_UnwrapKey(hSessionHandle,
 &mech,
 hKey,

(CK_BYTE_PTR)pbWrappedKey,
(CK_USHORT)ulWrappedKeySize,

 pTemplate,
 usTemplateSize,
 &hUnWrappedKey);
 }

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 362

Chapter 6: Design Considerations

 //
Report unwrapped key handle
 if(
retCode == CKR_OK)

{
 cout
<< "\n Private key Unwrapped key is:" << hUnWrappedKey
<<"\n\n";
 }
 else

{
 cout
<< "\n" "Error 0x" << hex << retCode;
 cout
<< " unwrapping.\n";
 if(
pEncryptedData)

{
 delete
pEncryptedData;
 }
 error
= -13;
 goto
exit_routine_6;
 }
 //
Release temporary memory
 if(
pEncryptedData)

{
 delete
pEncryptedData;
 }
 //
Create the Public Key that goes with the Private Key
 if(
retCode == CKR_OK)
{

 //
Unwrap it onto the token
 pPublicRSAKeyTemplate[0].pValue
= &publicKey;
 pPublicRSAKeyTemplate[1].pValue
= &rsaType;
 pPublicRSAKeyTemplate[2].pValue
= &bToken;
 pPublicRSAKeyTemplate[3].pValue
= &bPrivate;
 pPublicRSAKeyTemplate[4].pValue
= &bEncrypt;
 pPublicRSAKeyTemplate[5].pValue
= &bSign;
 pPublicRSAKeyTemplate[6].pValue
= &bWrap;
 pPublicRSAKeyTemplate[7].pValue
= knownRSA1Modulus;
 pPublicRSAKeyTemplate[8].pValue
= knownRSA1PubExponent;

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 363

Chapter 6: Design Considerations

 pPublicRSAKeyTemplate[9].pValue
= pbPublicRSAKeyLabel;
 pTemplate
= pPublicRSAKeyTemplate;
 usTemplateSize
= DIM(pPublicRSAKeyTemplate);
 retCode
= C_CreateObject(hSessionHandle,
pTemplate,
 usTemplateSize,
 &hPublicRSAKey);
 if(retCode
== CKR_OK)
{

 cout
<< pbPublicRSAKeyLabel << ": " << hPublicRSAKey
<< endl;
 }
 else
{

 cout
<< "\n" "Error 0x" << hex << retCode;
 cout
<< " creating the RSA Public Key.\n";
 error
= -14;
 goto
exit_routine_6;
 }
 }
if(retCode == CKR_OK)

{
CK_CHAR label[] = "RSA Key";
CK_ATTRIBUTE RSAFindPriTemplate[] =
{
CKA_LABEL, label, sizeof(label)
};
CK_ULONG numHandles;
CK_OBJECT_HANDLE handles[1000];
retCode = C_FindObjectsInit(hSessionHandle, RSAFindPriTemplate,
1);
if(retCode != CKR_OK)
{
cout << "C_FindObjectsInit not returning OK ("
<< hex << retCode << ")\n\n";
goto exit_routine_6;
}
retCode =C_FindObjects(hSessionHandle , handles, 90,
&numHandles);
if(retCode != CKR_OK)
{
cout << "C_FindObjects not returning OK ("
<< hex <<
retCode << ")\n\n";
goto exit_routine_6;
}
cout << "Everything's GOOD\n\n";
for(int i=0; i < numHandles; i++)
{
cout << handles[i] << "\n";
}

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 364

Chapter 6: Design Considerations

}
}
//CJM-> END OF TEST CODE
 //
Beginning of exit routines
exit_routine_6:
 //
Logout
 retCode
= C_Logout(hSessionHandle);
 if(retCode
!= CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " logging out.";
}
exit_routine_5:
// Close the session
 retCode
= C_CloseSession(hSessionHandle);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode << " closing session.";
}
exit_routine_4:
 delete
pSlotList;
exit_routine_3:
#ifdef PKCS11_2_0
 C_Finalize(0);
#else
 C_Terminate();
#endif
exit_routine_2:
#ifndef STATIC
 //
No longer need Chrystoki
 CrystokiDisconnect();
#endif
exit_routine_1:
 cout
<< "\nDone. (" << dec << error << ")\n";
 cout.flush();
 return
error;
}
CK_RV Pinlogin(CK_SESSION_HANDLE
hSession)
{

CK_RV retCode;
unsigned char buffer[MAX];
int count =0;
cout << "Please enter the USER password : "
<< endl;
//calling get PinString to mask input, variable "count"

//holds length of "buffer"(password)
//needed for Login call
count = getPinString(buffer);

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 365

Chapter 6: Design Considerations

//Login as user on token
in slot
retCode = C_Login(hSession, CKU_USER, buffer, count);
if(retCode != CKR_OK)
{
cout << "\n" "Error 0x" <<
hex << retCode;
 cout
<< " logging in as user.";
 exit(hSession);
 return
-3;
}
cout << "logging into the token....";
cout << "\nlogged into token " << endl;
return retCode;
}
///
// getPinString()
// ==============
//
// This function retrieves a pin string from the user. It
modifies the
// console mode before starting so that the characters the
user types are
// not echoed, and a '*' character is displayed for each
typed character
// instead.
//
// Backspace is supported, but we don't get any fancier than
that.
//
int getPinString(CK_CHAR_PTR pw)
{
 int
len=0;
 char
c=0;
 //
Unfortunately, the method of turning off character echo is
// different for Windows and Unix platforms. So
we have to
// conditionally compile the appropriate section. Even
the basic
// password retrieval is slightly different, since
 //
Windows and Unix use different character codes for the return key.
#ifdef WIN32
 DWORD
mode;
 //
This console mode stuff only applies to windows. We'll
have to
// do something else when it comes to unix.
 if
(GetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), &mode)) {
 if
(SetConsoleMode(GetStdHandle(STD_INPUT_HANDLE), mode & (!ENABLE_ECHO_INPUT)))
{

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 366

Chapter 6: Design Considerations

 while
(c != '\r')
{
 //
wait for a character to be hit
 while
(!_kbhit()) {
 Sleep(100);
 }
 //
get it
 c
= _getch();
 //
check for carriage return
 if
(c != '\r') {
 //
check for backspace
 if
(c!='\b') {
 //
neither CR nor BS -- add it to the password string
 printf("*");
 *pw++
= c;
 len++;
 }
else {
// handle backspace -- delete the last character &
// erase it from the screen
 if
(len > 0) {
 pw--;
 len--;
 printf("\b
\b");
}
}
}
}
 //
Add the zero-termination
 *pw
= '\0';
 SetConsoleMode(GetStdHandle(STD_INPUT_HANDLE),
mode);
 printf("\n");
}
 }
#endif
 return
len;
}

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 367

Chapter 6: Design Considerations

Audit Logging
By default, the HSM logs select events. See "Audit Logging" on page 1 in the Administration Guide for more
information.

The HSM creates a log secret unique to the HSM, computed during the first initialization after manufacture.
The log secret resides in flash memory (permanent, non-volatile memory), and is used to create log records
that are sent to a log file. Later, the log secret is used to prove that a log record originated from a legitimate
HSM and has not been tampered with.

Audit Log Records
A log record consists of two fields – the log message and the HMAC for the previous record. When the HSM
creates a log record, it uses the log secret to compute the SHA256-HMAC of all data contained in that log
message, plus the HMAC of the previous log entry. The HMAC is stored in HSM flash memory. The log
message is then transmitted, along with the HMAC of the previous record, to the host. The host has a logging
daemon to receive and store the log data on the host hard drive.

For the first log message ever returned from the HSM to the host there is no previous record and, therefore, no
HMAC in flash. In this case, the previous HMAC is set to zero and the first HMAC is computed over the first log
message concatenated with 32 zero-bytes. The first record in the log file then consists of the first log message
plus 32 zero-bytes. The second record consists of the second message plus HMAC1 = HMAC (message1 ||
0x0000). This results in the organization shown below.

MSG 1 HMAC 0

. . .

MSG n-1 HMAC n-2

MSG n HMAC n-1

. . .

MSG n+m HMAC n+m-1

MSG n+m+1 HMAC n+m

. . .

MSG end HMAC n+m-1

Recent HMAC in NVRAM HMAC end

To verify a sequence ofm log records which is a subset of the complete log, starting at index n, the host must
submit the data illustrated above. The HSM calculates the HMAC for each record the same way as it did when
the record was originally generated, and compares this HMAC to the value it received. If all of the calculated
HMACsmatch the received HMACs, then the entire sequence verifies. If an HMAC doesn’t match, then the

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 368

Chapter 6: Design Considerations

associated record and all following records can be considered suspect. Because the HMAC of each message
depends on the HMAC of the previous one, inserting or altering messages would cause the calculated HMAC
to be invalid.

The HSM always stores the HMAC of the most-recently generated log message in flash memory. When
checking truncation, the host would send the newest record in its log to the HSM; and, the HSM would compute
the HMAC and compare it to the one in flash. If it does not match, then truncation has occurred.

Audit LogMessage Format
Each message is a fixed-length, comma delimited, and newline-terminated string. The table below shows the
width and meaning of the fields in a message.

Offset Length (Chars) Description

0 10 Sequence number

10 1 Comma

11 17 Timestamp

28 1 Comma

29 256 Message text, interpreted from raw data

285 1 Comma

286 64 HMAC of previous record as ASCII-HEX

350 1 Comma

351 96 Data for this record as ASCII-HEX (raw data)

447 1 Newline '\n'

The raw data for the message is stored in ASCII-HEX form, along with a human-readable version. Although this
format makes the messages larger, it simplifies the verification process, as the HSM expects to receive raw
data records.

Example
The following example shows a sample log record. It is separated into multiple lines for readability even though
it is a single record. Some white spaces are also omitted.
38,12/08/13 15:30:50,session 1 Access 2147483651:22621 operation LUNA_CREATE_CONTAINER
returned LUNA_RET_SM_UNKNOWN_TOSM_STATE(0x00300014) (using PIN (entry=LUNA_ENTRY_DATA_AREA)),
29C51014B6F131EC67CF48734101BBE301335C25F43EDF8828745C40755ABE25,
2600001003600B00EA552950140030005D580000030000800100000000000000000000000000000000000000
The sequence number is “38”. The time is “12/08/13 15:30:50”.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 369

Chapter 6: Design Considerations

The log message is “session 1 Access 2147483651:22621 operation LUNA_CREATE_
CONTAINER returned LUNA_RET_SM_UNKNOWN_TOSM_STATE(0x00300014) (using PIN
(entry=LUNA_ENTRY_DATA_AREA))”.

In the message text, the “who” is the session identified by “session 1 Access 2147483651:22621”
(the application is identified by the access IDmajor = 2147483651, minor = 22621).

The “what” is “LUNA_CREATE_CONTAINER”.

The operation status is “LUNA_RET_SM_UNKNOWN_TOSM_STATE(0x00300014)”.

The HMAC of previous record is
“29C51014B6F131EC67CF48734101BBE301335C25F43EDF8828745C40755ABE25”.

The remainder is the raw data for this record as ASCII-HEX.

Log External
An important element of the security audit logging feature is the Log External function. This SafeNet extension
to PKCS #11 allows a user application to insert text of the user’s choice into the log record stream. The function
call isCA_LogExternal (). It can be used, for example, to insert an application name or the name of the user
who is logged into the application and have the inserted text string protected as part of the audit log in the same
way as records that have been generated by the HSM itself. It is recommended that applications use the CA_
LogExternal () function when the application starts to insert the application name and also to insert the user
name each time an individual user logs into or out of the application. The function is called as:

CA_LogExternal(CK_SLOT_ID slotID, CK_SESSION_HANDLE hSession, CK_CHAR_PTR pData, CK_
ULONG puldataLen);

where:

> slotID is PKCS #11 slot containing the HSM or partition being addressed

> hSession is the handle of the session with which the record is to be associated
> pData is the pointer to the character array containing the external message
> puldataLen is the length of the character array
Note that the input character array is limited to a maximum of 100 characters and it will be truncated at 100
characters if puldataLen > 100.
For applications that cannot add this function call, it is possible to use the LunaCM command-line function
audit log externalwithin a startup script to insert a text record at the time the application is started.
When a user logs in to the SafeNet Luna Network HSM lunash:> session, the CA_LogExternal () function is
automatically called to register the user name and access ID. Subsequent HSM operations can be tracked by
the access ID.

You must configure the “log external” event category in order for the HSM to log the CA_LogExternal ()
messages.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 370

CHAPTER 7: Java Interfaces

This chapter describes the Java interfaces to the PKCS#11 API. It contains the following topics:

> "SafeNet JSP Overview and Installation" below

> "SafeNet JSP Configuration" on page 376

> "The JCPROV PKCS#11 JavaWrapper" on page 380

> "Java or JSP Errors" on page 386

> "Re-Establishing a Connection Between Your Java Application and SafeNet Luna Network HSM" on
page 387

> "Recovering From the Loss of All HA Members" on page 387

> "Using Java Keytool with SafeNet Luna Network HSM" on page 390

SafeNet JSP Overview and Installation
The SafeNet JSP is part of an application program interface (API) that allows Java applications to make use of
certain SafeNet products.

As with other APIs, some existing Java-based applications might have generic requirements and calls that can
already work with SafeNet products. In other cases, it might be necessary for you or your vendor to create an
application or to adapt one, using the JSPAPI.

You have the choice of:

> using a previously integrated third-party application, known to work with this SafeNet product

> performing your own integration with a Java-based application supplied by you or a third party, or

> developing your own application using our Java API.

Develop your own Java apps using our included Software Development Kit, which includes SafeNet Java API
usage notes for developers, as well as development support by SafeNet. A standard Java development
environment is required, in addition to the API provided by SafeNet.

Please refer to the current-version SafeNet Luna Network HSM Customer Release Notes (CRN) for the most
up-to-date list of supported platforms and APIs.

NOTE Java Provider (JSP) - both GMC and GMAC are supported.GmacAesDemo.java
provides a sample for using GMACwith Java.
Java Parameter Specification class LunaGmacParameterSpec.java defines default values
recommended by the NIST specification.

This following sections describe the tasks required to set up the JSPAPI:

> "Installation" on the next page

> "JSP Registration" on page 373

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 371

Chapter 7: Java Interfaces

> "Post-Installation Tasks" on page 374

Installation
To use the SafeNet JavaSP service providers three main components are needed:

> The Java SDK

> The Java Cryptographic JCEPolicy files (optional)

> The SafeNet JavaSP artifacts in the SafeNet Luna HSM Client

Java SDK Installation
Acquire and install the JDK or JRE (available from the Java site, not included with the SafeNet software). Refer
to the Customer Release Notes for supported Java versions.

Java Cryptographic JCE Policy Files Installation (optional)
If you intend to generate large key sizes, you might need to apply the unlimited strength ciphers policy. You will
need two cryptographic JCEPolicy files v 7/8/9/10/11 (available from the Oracle Java web site): local_policy.jar
and US_export_policy.jar.

Copy these files to JAVA_HOME/jre/lib/security (or the equivalent directory that applies to your setup).
[root@my-client]# echo $JAVA_HOME
/usr/java/default
[root@my-client]# cp -p local_policy.jar /usr/java/default/jre/lib/security/
[root@my-sclient]# cp -p US_export_policy.jar /usr/java/default/jre/lib/security/
If you see errors like "Invalid Key size", that is usually an indication that the JCE is not properly installed.

SafeNet JavaSP included in the SafeNet Luna HSM Client
Follow the installation procedure for the SafeNet Luna HSM Client as described in the Installation Guide. When
installing the SafeNet Luna HSM Client software, choose the option to install SafeNet JSP. There are two
SafeNet files: the LunaProvider.jar file, and the Java library file (libLunaAPI.so in Unix based systems or
LunaAPI.dll in Windows systems). To ensure that the Java Environment can find these files, follow the
instructions for either Java 7/8 or Java 9+.

Operating System JSP Install directory

AIX /usr/safenet/lunaclient/jsp/lib

Linux /usr/safenet/lunaclient/jsp/lib

Solaris /opt/safenet/lunaclient/jsp/

Windows C:\Program Files\LunaClient\JSP\lib

To configure Java 7/8 for SafeNet JSP

To ensure that SafeNet Luna Network HSM and SafeNet JSP can work with the JRE, copy the JSP files from
the default installation location to the Java environment. The exact destination directory might differ depending
on where you obtained your Java system, the version, and any choices that you made while installing and

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 372

Chapter 7: Java Interfaces

configuring it.

Operating
System

Destination directory example

AIX /usr/jre/lib/ext

Linux /usr/jre/lib/ext

Solaris /opt/jre/lib/ext

Windows <java_install_dir>\bin
C:\Program Files\Java\jdk1.8.0_121\bin

NOTE Java 7/8/9 forWindows has removed the <java_install_dir>\lib\ext directory
from the Java library path.

To configure Java 9+ for SafeNet JSP

Add LunaProvider.jar to the Java classpath and specify the SafeNet Java library location (libLunaAPI.so in
Unix based systems or LunaAPI.dll in Windows systems) in the Java library path.

For example:

> java -cp /<directory_location>/LunaProvider.jar -Djava.library.path=<SafeNet_Java_library_location>
<class name>

TIP In Windows, you can also put LunaAPI.dll in an arbitrary folder and add that folder to
the system path. Java will search the system path for LunaAPI.dll.

The exact directory might differ depending on where you obtained your Java system, the version, and any
choices that you made while installing and configuring it.

JSPRegistration
Before Java can use SafeNet JSP, you must register it with the Java Runtime Enviroment. You can choose
either a static registration or a dynamic registration. A static registration defaults all Java applications to default
to the SafeNet provider, while a dynamic registration allows you to set the provider for Java applications
individually.

JSP Static Registration

NOTE This section applies to JSP, not to JCPROV.

You would choose static registration of providers if you want all applications to default to the SafeNet provider.

Once your client has externally logged in using salogin or your own HSM-aware utility, any application would
be able to use SafeNet product without being designed to log in to the HSM Partition.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 373

Chapter 7: Java Interfaces

Edit the java.security file located in the /jre/lib/security directory of your Java SDK/JRE installation to read as
follows:
security.provider.1=sun.security.provider.Sun
security.provider.2=com.sun.net.ssl.internal.ssl.Provider
security.provider.3=com.safenetinc.luna.provider.LunaProvider
security.provider.4=com.sun.rsajca.Provider
security.provider.5=com.sun.crypto.provider.SunJCE
security.provider.6=sun.security.jgss.SunProvider
You can set our provider in first position for efficiency if SafeNet Luna HSM operations are your primary mode.
However, if your application needs to perform operations not supported by the LunaProvider (secure random
generation or random publickey verification, for example) then it would receive error messages from the HSM
and would need to handle those gracefully before resorting to providers further down the list. We have found
that having our provider in third position works well for most applications.

The modifications in the java.security file are global, and they might result in the breaking of another
application that uses the default KeyPairGenerator without logging into the SafeNet Luna Network HSM first.
This consideration might argue for using dynamic registration, instead.

JSP Dynamic Registration
You might prefer to employ dynamic registration of Providers, in order to avoid possible negative impacts on
other applications running on the same machine. As well, the use of dynamic registration allows you to keep
installation as straightforward as possible for your customers.

This sample code shows an example of dynamic registration with the SafeNet provider. The SafeNet provider
is registered in position 2, ensuring that the "SUN" provider is still the default. If you want the SafeNet provider
to be used when no provider is explicitly specified, it should be registered at position 1.
try {
 com.safenetinc.luna.LunaSlotManager.getInstance().login("<HSM Partition Password>");
 java.security.Provider provider = new com.safenetinc.luna.provider.LunaProvider();
 // removing the provider is only necessary if it is already registered
 // and you want to change its position
 java.security.Security.removeProvider(provider.getName());
 java.security.Security.insertProviderAt(provider, 2);
 com.safenetinc.luna.LunaSlotManager.getInstance().logout();
} catch (Exception e) {
 System.out.println("Exception caught during loading of the providers: "
 + ex.getMessage());

Post-Installation Tasks

Making Private and Secret Keys Extractable
By default, all generated private and secret keys have their CKA_EXTRACTABLE attribute set to 0 (see "Key
Attribute Defaults" on page 339). These keys are stored in the HSM hardware and cannot be extracted, only
cloned to a partition on another HSM. This attribute cannot be modified later. If you want the ability to wrap
private and/or secret keys and export them off the HSM, you must use one of the following two methods to set
CKA_EXTRACTABLE to 1 (TRUE) when the key is created:

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 374

Chapter 7: Java Interfaces

Global configuration:

Configure java.security as follows to have JSP create all future private/secret keys with CKA_
EXTRACTABLE=1:

> To make all private keys extractable, add the following line to java.security:
com.safenetinc.luna.provider.createExtractablePrivateKeys=true

> To make all secret keys extractable, add the following line to java.security:
com.safenetinc.luna.provider.createExtractableSecretKeys=true

Local configuration:

Configure CKA_EXTRACTABLE on a key-by-key basis by using the following methods in your Java application:

> To make the next generated private key extractable using the
LunaSlotManager.setPrivateKeysExtractable()method:
LunaSlotManager.getInstance().setPrivateKeysExtractable(true); // Set CKA_EXTRACTABLE=1 on
upcoming private keys
kpg = KeyPairGenerator.getInstance("RSA", "LunaProvider");
kpg.initialize(2048);
myPair = kpg.generateKeyPair();
LunaSlotManager.getInstance().setPrivateKeysExtractable(false); // Set CKA_EXTRACTABLE=0 on
upcoming private keys

NOTE To wrap and export private keys, the partition must have partition policy 1: Allow
private key wrapping set to 1 (ON). See Configuring the Partition for Cloning or Export of
Private Keys in the Administration Guide.

> To make the next generated secret key extractable using the
LunaSlotManager.setSecretKeysExtractable()method:
LunaSlotManager.getInstance().setSecretKeysExtractable(true); // Set CKA_EXTRACTABLE=1 on
upcoming secret keys
kg = KeyGenerator.getInstance("AES");
kg.init(256);
aesKey = kg.generateKey();
LunaSlotManager.getInstance().setPrivateKeysExtractable(false); // Set CKA_EXTRACTABLE=0 on
upcoming secret keys

Using ECC Keys for TLS with Java 7
For optimal Java performance when using Elliptic Curve keys to perform TLSwith Java 7, where those keys
reside in the HSM, you must configure the SunEC security provider (sun.security.ec.SunEC) to be below the
LunaProvider in your java.security file.

We suggest that you not attempt to resolve a performance issue by having the LunaProvider as the default
because that would result in the symmetric keys also being used in the HSM which is not optimal for
performance.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 375

Chapter 7: Java Interfaces

Managing Security for Java Developers
The SafeNet JSP is a Java API that is intended to be used as an interface between customer-written or third-
party Java applications and the SafeNet Luna Network HSM. Managing security issues associated with the
overall operational environment in which the application is running, including the user interface, is the
responsibility of the application.

A common example would be input and capture of user name and password. The application, or a set of
organizational procedures, is responsible for making the access control decision regarding whether the user
has the necessary permissions (at the organizational level) to access the HSM's services and then must
provide protection for the password as it is entered, and erasure from memory after the operation is
completed. The SafeNet JSPwill control access to the HSM based on the correct password being input from
the application via the Login method, but security outside the HSM is your responsibility.

Non-standard ECDSA Mapping
The SafeNet provider maps the "ECDSA" signature algorithm to "NONEwithECDSA". The Java convention is to
map it to "SHA1withECDSA". This is noted here in case you wish to use it in provider inter-operability testing.
This mapping is noted in the Javadoc as well.

For comparison, "RSA" maps to "NONEwithRSA" while "DSA" maps to "SHA1withDSA".

Notes about thread safe, session safe, and multi-threading
PKCS#11 (the standard, and Gemalto's implementation) requires that a session can be used only by a single
thread at a time. That is, multiple threads cannot access the same session simultaneously. Threads can share
a session; however the application must ensure that only one thread accesses the session at a time. It is
simpler for an application to assign a unique session for each thread, but applications do not need to follow that
pattern.

Our LunaProvider endeavors to be thread safe in the way it uses our PKCS#11 library. But customer Java
applications must follow the threading model defined by Java. For example, Java Cipher objects (essentially
all crypto-related objects) are not thread safe according to the JSP specification. Similar to PKCS#11 sessions,
only one thread should use a cipher object at a time. Our LunaProvider requires that the Java application
follows that JSP approach.

Therefore, it is very possible, and expected, to see sessions being used by multiple threads, all in legitimate
and thread-safe ways according to both JSP and PKCS#11.

SafeNet JSP Configuration
SafeNet JSP consists of a single JCA/JCE service provider, that allows a Java-based application to use
SafeNet Luna Network HSM products for secure cryptographic operations. Please refer to the Javadocs
accompanying the toolkit, for the most current information regarding the SafeNet JSP packages and
LunaProvider functionality.

To install JSP, refer to "SafeNet JSP Overview and Installation" on page 371.

SafeNet Java Security Provider
In general, you should use the standard JCA/JCE classes and methods to work with SafeNet Luna Network
HSM. The following sections provide examples of when you may wish to use the special SafeNet methods.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 376

Chapter 7: Java Interfaces

Class Hierarchy
All public classes in the SafeNet Java crypto provider are included in the com.safenetinc.luna package or
subpackages of that package. Thus the full class names are (for example):

> com.safenetinc.luna.LunaSlotManager

> com.safenetinc.luna.provider.key.LunaKey

If your application is compliant with the JCA/JCE spec, you will generally not need to directly reference any
SafeNet implementation classes. Use the interfaces defined in the java.security packages instead. The
exception is if you need to perform an HSM-specific operation, such as modifying PKCS#11 attributes.

Throughout the rest of this document, the short form of the class names is used for convenience and
readability. The full class names (of SafeNet or other classes) are used only where necessary to resolve
ambiguity.

Special Classes/Methods
The JCA/JCE interfaces were not designed with hardware security modules (HSMs) in mind and do not include
methods for managing aspects of a hardware module. SafeNet JSP provides some additional functions in
addition to the standard JCA/JCEAPI.

The LunaSlotManager class provides custom methods that allow some HSM-specific information to be
retrieved. It also provides a way to log in to the HSM if your application cannot make use of the standard
KeyStore interface. For details please check the Javadoc which comes with the product.

It is not always necessary to use the LunaSlotManager class. With proper use of the JCEAPI provided in
SafeNet JSP, your code can be completely hardware-agnostic.

The LunaKey class implements the Key interface and provides all of the methods of that class along with
custom methods for manipulating key objects on SafeNet hardware.

NOTE Sensitive attributes cannot be retrieved from keys stored on SafeNet hardware. Thus
certain JCE-specified methods (such as PrivateKeyRSA.getPrivateExponent()) will throw an
exception.

The LunaCertificateX509 class implements the X509Certificate methods along with custom methods for
manipulating certificate objects on SafeNet hardware.

Examples
The SafeNet JSP comes with several sample applications that show you how to use the Luna provider. The
samples include detailed comments.

To compile on Windows without an IDE (Administrator privileges may be required):
cd <SafeNet Luna Network HSM install>/jsp/samples
javac com\safenetinc\luna\sample*.java

To run:
java com.safenetinc.luna.sample.KeyStoreLunaDemo (or any other sample class in that package)

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 377

Chapter 7: Java Interfaces

NOTE The Luna Keystore is not a physical file like a regular JKS. It is a virtual interface to the
HSM and contains only handles for the private key objects.

Authenticating to the HSM
In order to make use of an HSM, it is necessary to activate the device through a login. Depending on the
security level of the device, the login will require a plain-text password and/or a PED key.

The preferred method of logging in to the module is through the Java KeyStore interface. The store type is
“Luna” and the password for the key store is the challenge for the partition specified.

KeyStore files for the Luna KeyStore must be created manually. The content of the KeyStore file differs if you
wish to reference the partition by the slot number or label (preferred). Details of authenticating to the HSM via
the KeyStore interface are explained in the Javadoc for LunaKeyStore and in the KeyStoreLunaDemo sample
application.

NOTE We strongly recommend that you use the application partition's label as the identifier
for the cryptographic slot on the HSM. That designator never changes, unless you explicitly
change label. The slot number, on the other hand, might change, and therefore should not be
used in your code.

Keys in a Luna KeyStore cannot have individual passwords. Only the KeyStore password is used. If your HSM
requires PED keys to be presented for authentication and the partition is not already activated, loading the
KeyStore will cause the PED to prompt you to present this key.

Other than the KeyStore interface your application may also make use of the LunaSlotManager class or by
using a login state created outside of the application through a utility called ‘salogin’. Use of salogin is strongly
discouraged unless you have a very specific need.

LunaKeyStoreMP is Deprecated
LunaKeyStoreMP is deprecated for SafeNet JSP, and may be discontinued in a future release.
LunaKeyStoreMPwas used in previous releases to allow logical partitioning of the key space on HSMs that
have only one partition. This allowed you to create a separate MP key store for each individual client that
accessed the partition. Recent SafeNet releases, however, support multiple partitions, and dedicating a
partition per client is a superior solution for management and security reasons.

NOTE LunaKeyStoreMP is retained for backwards compatibility reasons only. Do not use
LunaKeyStoreMPwhen creating new applications.

Logging Out
Logging out of the HSM is performed implicitly when the application is terminated normally. Logging out of the
HSM while the application is running can be done with the LunaSlotManager class. Please note that any
ephemeral (non-persistent) key material present on the HSM will be destroyed when the session is logged out.
Because the link to the HSM will be severed, cryptographic objects that were created by the LunaProvider will
no longer be usable. Attempting to use these objects after logging out will result in undefined behavior.

All key material which was persisted on the HSM (either through the KeyStore interface or using the proprietary
Make Persistent method) will remain on the HSM after a logout and will be accessible again when the
application logs back in to the HSM.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 378

Chapter 7: Java Interfaces

Keytool
The SafeNet JSPmay be used in combination with Java’s keytool utility to store and use keys on a SafeNet
Luna Network HSM, see "Using Java Keytool with SafeNet Luna Network HSM" on page 390.

Cleaning Up
Keys that are made persistent will continue to exist on the HSM until they are explicitly destroyed, or until the
HSM is reinitialized. Persistent keys that are no longer needed can be explicitly destroyed to free resources on
the HSM.

Keys may be removed using the Keytool, or programmatically through the KeyStore interface or other methods
available through the API.

LunaSlotManager contains methods that report the number of objects that exist on the HSM. See the Javadoc
for LunaSlotManager for more information.

PKCS#11/JCA Interaction
Keys created using the SafeNet PKCS#11 API can be used with the SafeNet JSP; the inverse is also true.

Certificate Chains
The PKCS#11 standard does not provide a certificate chain representation. When a Java certificate chain is
stored on a SafeNet token, the certificates of the chain appear as individual objects when viewed through the
PKCS#11 API. In order for the LunaProvider to properly identify PKCS#11-created certificates as part of a
chain attached to a private key, the certificates must follow the labeling scheme described below.

Java Aliases and PKCS#11 Labels
The PKCS#11 standard defines a large set of object attributes, including the object label. This label is
analogous to the Object alias in a java KeyStore.

The SafeNet KeyStore key entry or a SafeNet KeyStore certificate entry will have a PKCS#11 object label
exactly equal to the Java alias. Similarly, a key created through PKCS#11 will have a Java alias equal to the
PKCS#11 label.

Because a java certificate chain cannot be represented as a single PKCS#11 object, the individual certificates
in the chain will each appear as individual PKCS#11 objects. The labels of these PKCS#11 objects will be
composed of the alias of the corresponding key entry, concatenated with "--certX", where 'X' is the index of the
certificate in the java certificate chain.

For example, consider a token that has a number of objects created through the Java API. The objects consist
of the following:

> A key entry with alias "signing key", consisting of a private key and a certificate chain of length 2

> A trusted certificate entry with alias "root cert"

> A secret key with alias "session key"

If all objects on the token were viewed through a PKCS#11 interface, 5 objects would be seen:

> A private key with label "signing key"

> A certificate with label "signing key--cert0"

> A certificate with label "signing key--cert1"

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 379

Chapter 7: Java Interfaces

> A certificate with label "root cert"

> A secret key with label "session key"

NOTE PKCS#11 labels (strings of ascii characters) and Java aliases (of the java.lang.String
type) are usually fully compatible, but problems can arise if non-printable characters are
used. To maintain compatibility between Java and PKCS#11, avoid embedding non-printable
or non-ascii characters in aliases or object labels.

RSA Cipher
Previously, by default, the SafeNet JSPRSA cipher mode used raw RSAX.509 encryption, with no padding.

For improved security and compatibility, default padding for RSA cipher has been changed from NoPadding to
PKCS1v1_5.

The JCPROV PKCS#11 JavaWrapper
This section describes how to install and use the JCPROV Java wrapper for the PKCS#11 API. It contains the
following topics:

> "JCPROVOverview" below

> "Installing JCPROV" on the next page

> "JCPROV Sample Programs" on the next page

> "JCPROV Sample Classes" on page 382

> "JCPROV API Documentation" on page 386

JCPROVOverview
JCPROV is a Java wrapper for the PKCS#11 API. JCPROV is designed to be as similar to the PKCS#11 API as
the Java language allows, allowing developers who are familiar with the PKCS#11 API to rapidly develop Java-
based programs that exercise the PKCS#11 API.

AES-GMAC and AES-GCM are supported in JCPROV. Use CK_AES_CMAC_PARAMS.java to define the
GMAC operation. Implementation is the same as for PKCS#11.

JDK compatibility
The JCPROV Java API is compatible with JDK 1.5.0 or higher.

The JCPROV library
The JCPROV library is implemented in jcprov.jar, under the namespace com.safenetinc.jcprov. It is
accompanied by a shared library that provides the native methods used to access the appropriate PKCS#11
library. The name of the shared library is platform dependent, as follows:

Operating system Shared library

Windows (64 bit) jcprov.dll

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 380

Chapter 7: Java Interfaces

Operating system Shared library

Linux libjcprov.so

Solaris libjcprov.so

AIX libjcprov.so

Installing JCPROV
Use the SafeNet Luna HSM Client Installer to install the JCPROV software (runtime and SDK packages). The
software is installed in the location specified in the following table:

Operating system Installation location

Windows C:\Program Files\safenet\lunaclient\jcprov

Linux /usr/safenet/lunaclient/jcprov

Solaris /opt/safenet/lunaclient/jcprov

AIX /usr/safenet/lunaclient/jcprov

The installation includes a samples subdirectory and a javadocs subdirectory.

Changing the Java JNI libraries (AIX only)
The Java VM on AIX does not support mixed mode JNI libraries. Mixed mode libraries are shared libraries that
provide both 32-bit and 64-bit interfaces. It is therefore essential that you select the correct JNI library to use
with your Java VM.

To configure the JNI library for use with a 64-bit Java VM:

1. Ensure that the /usr/safenet/lunaclient/jcprov/lib/libjcprov.a symbolic link points to a 64-bit version of
the library (libjcprov_64.a), for example /usr/safenet/lunaclient/jcprov/lib/libjcprov_64.a.

2. Ensure that the /usr/safenet/lunaclient/jcprov/lib/libjcryptoki.a symbolic link points to a 64-bit version
of the library (libjcryptoki_64.a), for example /usr/safenet/lunaclient/jcprov/lib/libjcryptoki_64.a.

JCPROVSample Programs
Several sample programs are included to help you become familiar with JCPROV. The binaries for the sample
programs are included in the jcprovsamples.jar file. You must compile the binaries before you can use the
sources provided.

Compiling and running the JCPROV sample programs

CAUTION! You require JDK 1.5.0 or newer to compile the JCPROV sample programs.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 381

Chapter 7: Java Interfaces

It is recommended that you compile the samples in their installed locations, so that the path leading to the
samples directory in the installation location will allow them to be executed as documented below.

Prerequisites
For best results, perform the following actions before attempting to compile the sample programs:

> Add jcprov.jar to your CLASSPATH environment variable

> Add a path to the CLASSPATH environment variable that allows JCPROV to use the
com.safenetinc.jcprov.sample namespace. This is required since all of the applications are registered
under this namespace.

To compile the JCPROV sample programs on UNIX/Linux:

1. Set the CLASSPATH environment variable to point to jcprov.jar and the root path for the sample
programs.
export CLASSPATH=<jcprov_installation_directory>/*

2. Change directory to the sample programs path.
cd /usr/safenet/lunaclient/jcprov/samples/com/safenetinc/jcprov/sample

3. Use the javac program to compile the examples.
javac GetInfo.java

4. Use the java program to run the samples.
java com.safenetinc.jcprov.sample.GetInfo -slot 0 -info

To compile the JCPROV sample programs on Windows:

1. Set the CLASSPATH environment variable to point to jcprov.jar and the root path for the sample
programs:
C:\> set “CLASSPATH= C:\Program Files\safenet\lunaclient\jcprov\jcprov.jar; C:\program
files\safenet\jcprov\samples”

2. Use the javac program to compile the examples:
C:\Program Files\safenet\lunaclient\jcprov\samples> javac GetInfo.java

3. Use the java program to run the samples:
C:\Program Files\safenet\lunaclient\jcprov\samples> java com.safenetinc.jcprov.sample.GetInfo -info
-slot 0

JCPROVSample Classes
JCPROV provides sample classes in the <jcprov_installation_directory>/samples directory. These include:
> "DeleteKey" on the next page

> "EncDec" on the next page

> "GenerateKey" on page 384

> "GetInfo" on page 385

> "Threading" on page 385

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 382

Chapter 7: Java Interfaces

Other samples contained in the samples directory may be more or less useful to you depending on what you
need. Each relevant sample has a description of both its purpose and its parameters in the header section of its
file.

DeleteKey
Demonstrates the deletion of keys.

A generated key is required to use this script. To generate a key, use "GenerateKey" on the next page or refer
to "Using Java Keytool with SafeNet Luna Network HSM" on page 390

Usage
java com.safenetinc.jcprov.sample.DeleteKey -keyType <keytype> -keyName <keyname> [-slot
<slotId>] [-password <password>]

Parameters

Parameter Description

-keytype Specifies the type of key you want to delete. Enter this parameter followed by one of the following
supported key types:
> des - single DES key
> des2 - double-length, triple-DES key
> des3 - triple-length, triple-DES key
> rsa - RSA key pair

-keyName Specifies the name (label) of the key you want to delete. Enter this parameter followed by the name
(label) of the key you want to delete.

-slot Specifies the slot for the HSM or partition that contains the key you want to delete. Optionally enter
this parameter followed by the slot identifier for the HSM or partition that contains the key you want
to delete. If this parameter is not specified, the default slot is used.
Default: 1

-password Specifies the password for the slot. Optionally enter this parameter followed by the slot password to
delete a private key.

EncDec
Demonstrates encryption and decryption operations by encrypting and decrypting a string.

A generated key is required to use this script. To generate a key, use "GenerateKey" on the next page or refer
to "Using Java Keytool with SafeNet Luna Network HSM" on page 390

Usage
java com.safenetinc.jcprov.sample.EncDec -keyType <keytype> -keyName <keyname> [-slot <slotId>]
[-password <password>]

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 383

Chapter 7: Java Interfaces

Parameters

Parameter Description

-keytype Specifies the type of key you want to use to perform the encryption/decryption operation. Enter this
parameter followed by one of the following supported key types:
> des - single DES key
> des2 - double-length, triple-DES key
> des3 - triple-length, triple-DES key
> rsa - RSA key pair

-keyName Specifies the name (label) of the key you want to use to perform the encryption/decryption operation.
Enter this parameter followed by the name (label) of the key you want to use to perform the
encryption/decryption operation.

-slot Specifies the slot for the HSM or partition that contains the key you want to use to perform the
encryption/decryption operation. Optionally enter this parameter followed by the slot identifier for the
HSM or partition that contains the key you want to use to perform the encryption/decryption
operation. If this parameter is not specified, the default slot is used.
Default: 1

-password Specifies the password for the slot. Optionally enter this parameter followed by the slot password to
encrypt/decrypt a private key.

GenerateKey
Demonstrates the generation of keys.

Usage
java com.safenetinc.jcprov.sample.GenerateKey -keyType <keytype> -keyName <keyname> [-slot
<slotId>] [-password <password>]

Parameters

Parameter Description

-keytype Specifies the type of key you want to generate. Enter this parameter followed by one of the following
supported key types:
> des - single DES key
> des2 - double-length, triple-DES key
> des3 - triple-length, triple-DES key
> rsa - RSA key pair

-keyName Specifies the name (label) of the key you want to generate. Enter this parameter followed by the
name (label) of the key you want to generate.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 384

Chapter 7: Java Interfaces

Parameter Description

-slot Specifies the slot for the HSM or partition where you want to generate the key. Optionally enter this
parameter followed by the slot identifier for the HSM or partition where you want to generate the key.
If this parameter is not specified, the default slot is used.
Default: 1

-password Specifies the password for the slot. Optionally enter this parameter followed by the slot password to
generate a private key.

GetInfo
Demonstrates the retrieval of slot and token information.

Usage
java com.safenetinc.jcprov.sample.GetInfo {-info | -slot [<slotId>] | -token [<slotId>]}

Parameters

Parameter Description

-info Retrieve general information.

-slot Retrieve slot information for the specified slot. Enter this parameter followed by the slot identifier for the
slot you want to retrieve information from. If <slotId> is not specified, information is retrieved for all
available slots.

-token Retrieve token information for the HSM or partition in the specified slot. Enter this parameter followed
by the slot identifier for the HSM or partition you want to retrieve information from. If <slotId> is not
specified, information is retrieved for all available slots.

Threading
This sample program demonstrates different ways to handle multi-threading.

This program initializes the Cryptoki library according to the specified locking model. Then a shared handle to
the specified key is created. The specified number of threads is started, where each thread opens a session
and then enters a loop which does a triple DES encryption operation using the shared key handle.

It is assumed that the key exists in slot 1, and is a Public Token object.

A generated key is required to use this script. To generate a key, use "GenerateKey" on the previous page or
refer to "Using Java Keytool with SafeNet Luna Network HSM" on page 390

Usage
java com.safenetinc.jcprov.sample.Threading -numThreads <numthreads> -keyName <keyname> -
locking { none | os | functions } [-v]

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 385

Chapter 7: Java Interfaces

Parameters

Parameter Description

-numthreads Specifies the number of threads you want to start. Enter this parameter followed by an integer
that specifies the number of threads you want to start.

-keyName Specifies the triple-DES key to use for the encryption operation. Enter this parameter followed by
the name (label) of the key to use for the encryption operation.

-locking Specifies the lockingmodel used when initializing the Cryptoki library. Enter this parameter
followed by one of the following lockingmodels:
> none - do not use locking when initializing the Cryptoki library. If you choose this option,

some threads should report failures.
> os - use the native operating systemmechanisms to perform locking.
> functions - use Java functions to perform locking

-v Specifies the password for the slot. Optionally enter this parameter followed by the slot password
to generate a private key.

JCPROVAPI Documentation
The JCPROVAPI is documented in a series of javadocs. The documentation is located in the <jcprov_
installation_directory>/javadocs directory.

Java or JSP Errors
In the process of using our JSP (Java Service Provider) or programming for Java clients, you might encounter
a variety of errors generated by various levels of the system. In rare cases those might be actual problems with
the system, but in the vast majority of cases the errors are the system (or the Client-side libraries) telling you
that you (or your application) have done something "wrong". In other words, the error messages are guidance
to ensure that your actions and your programs are giving the system what it needs (in the right order and
format) to complete the tasks that you ask of it.

Keep in mind that there are several levels involved. The SafeNet appliance and its HSM keycard have both
software and firmware built in. Among other things, the system software handles the system side of
communication between you (either as administrator or as Client) and the HSM on the appliance. In general, a
client-side program (or programmer) would not encounter error messages directly from the system. If an error
condition arises on the system, the most likely visibility would be error messages in the system logs - viewed by
the appliance administrator - or else client-side messages based upon the interaction of the client-side
software (ours and yours) with the appliance.

On the client side, the JSP and any Java programs that you use would be overlaid on, and using, the SafeNet
library, which is an extended version of PKCS#11, customized to make use of our HSM (the standard itself and
the cryptoki library are oriented toward in-software implementation of cryptographic functions, with some
generic support of generic HSM functions, leaving room for each HSM supplier to support their own special

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 386

Chapter 7: Java Interfaces

functions by extending the standard). PKCS#11 is an RSA Laboratories cryptographic standard, and our
libraries are a C-language implementation of that standard. You can view all that is known about PKCS #11
error conditions and messages at the RSAwebsite.

See "Library Codes" on page 1 for a summary of error codes and their meanings, which includes the SafeNet
extensions to the PKCS#11 standard that are specific to our HSM. Note that "error codes" do not usually
indicate a problem with the appliance or HSM - they indicate an exception condition has been encountered,
possibly because you (or your application) stopped/canceled a requested action before it could complete,
provided incorrect or incomplete or wrongly-formatted input data, and so on, or possibly because a network
connection has been disrupted, power has failed, or any of a variety of situations has been detected.

The JSP and your Java programming are overlaid on top of the PKCS#11 and SafeNet libraries. An error
reported by a Java application might refer to a problem at the Java or JSP level, or the error might have been
passed through from a lower level.

If you receive a cryptic error that looks something like:
Exception in thread "main"
com.safenetinc.crypto.LunaCryptokiException: function 'C_Initialize' returns 0x30
then this error has been passed through from a lower layer and is not a Java or JSP error. You should look in
the Error Codes page (link above) or in the PKCS#11 standard for the meaning of any error in a similar format.

In general, we wrap cryptoki exception codes. Most exceptions thrown by the JSP are in accordance with the
specification. Check the Javadoc for the API call that threw the exception.

> LunaException is used to report a LunaProvider-specific exception.

> LunaCryptokiException reports errors returned by the HSM. Those might be wrapped in other Exceptions.

Re-Establishing a Connection Between Your Java Application and
SafeNet Luna Network HSM
Thales Group provides Java code samples for performing various application functions. For the proper method
for performing a reconnect between a Java application and the SafeNet Luna Network HSM in the event of a
disconnect, seeMiscReconnectDemo.java in the Samples folder.

Recovering From the Loss of All HAMembers
The reinitialize method of the LunaSlotManager class takes the role of the PKCS#11 functionsC_Finalize
and C_Initialize. It is intended to be used when a complete loss of communication happens with all the
members of your High Availability (HA) group.

This section describes the situations in which you should use this method, the effect this method has on a
running application, and how to use this method safely. It is assumed that the auto-recovery features of the HA
group are enabled.

You should read this section if you are developing an application that uses the LunaProvider in an environment
that leverages an HA group of SafeNet Luna Network HSM appliances, so that you can safely recover an entire
HA group.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 387

http://www.rsa.com/rsalabs/node.asp?id=2133

Chapter 7: Java Interfaces

When to Use the reinitializeMethod
When using the high-availability (HA) features of SafeNet Luna Network HSM, the auto-recovery feature will
resolve situations where connectivity is lost to a subset of members for a brief time. However, if you lose
connection to all members then the connection cannot be automatically recovered. Finalizing the library and
initializing it again is the only way to recover other than restarting the application.

Why theMethodMust Be Used
In an HA group, we rely on having at least one member present in order to maintain state. If all of the members
have been lost, then we cannot make any determination of which member has a known good state. Also, when
a connection to a member is lost, the authenticated state is lost. When an individual member returns, we can
use the authenticated state from another member to authenticate to the one that has returned. When all
members are lost, then the authenticated state is lost on all members.

What Happens on the HSM
The Network Trust Link Service (NTLS) on the HSM appliance is responsible for cleaning up any cryptographic
resources, such as session objects, and cryptographic operation contexts when a connection to the client is
lost. This happens when the socket closes.

Effect on Running Applications
All resources created within the LunaProvider must be treated as junk after the library is finalized. Sessions will
no longer be valid, session objects will point to non-existent objects or worse to a wrong object, and
Signature/Cipher/Mac/etc objects will have invalid data.
Even LunaKey objects, which represent persistent objects, may contain invalid data. When the virtual slot is
constructed in the library, the virtual object table is built from the objects present on each individual member.
There is no guarantee that objects will have the same handle from one initialization to the next. This is true from
the moment the connection to the group is severed. All these resources must be released before calling the
reinitialize method. Beyond causing undesirable behavior when used, if these objects are garbage collected
after cryptographic operations resume, they can result in the deletion of new objects or sessions.

Using the Method Safely
The first indication that all communications may have been lost with the group is a LunaException reporting
an error code of 0x30 (Device Error). Other possible error codes that can indicate this status are 0xE0 (Token
not present) and 0xB3 (Session Handle invalid). The LunaException class does not provide the error code as
a discrete value and you will have to parse the message string to determine this value.

At this point, you should validate that the group has been lost. The com.safenetinc.luna.LunaHAStatus
object is best suited for this. Your application should know the slot number of the HA slot that you are using
because it may not be able to query this information from the label when the slot is missing.

Example
LunaHAStatus status = new LunaHAStatus(haSlotNumber);

You can query the object for detailed information or just use the isOK()method to determine if the group has
been lost. The isOK()method will return true if all members are still present. If all members are gone, an
exception will be thrown.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 388

Chapter 7: Java Interfaces

If no application is thrown, the application should be able to proceed operating, and any individual members of
the HA group that have been lost will be recovered by the library. Further details on failed members can be
queried through the LunaHAStatus object.

In many highly threaded applications, such as web applications, it is desirable to have a singleton, which is
responsible for keeping track of the health of the HSM connection. This can be done by having worker threads
report information to this singleton, by having a specific health check thread, or through a combination of the
two.

Once the error state is discovered, all worker threads should be stopped or allowed to return an error. It may
take up to 40 seconds from the time the group was lost for all threads to discover that there is an error. It can
take 20 seconds for any given command to time out as a result of network failure. Once this happens, new
commands will not be sent to that HSM, but a command may have just been sent and that command will have
its own 20-second timeout. As mentioned above, in the section on application effects, all of the objects created
or managed by the LunaProvider must be considered at this point to contain junk data. Operating after
recovery with this junk data can cause undesired effects. This means all keys, signature, cipher, Mac,
KeyGenerator, KeyPairGenerator, X509Certificate, and similar objects must be released to the garbage
collector. Instances of most non-SPI (LunaAPI, LunaSlotManager, LunaTokenManager, etc.) objects do not
pose a problem, but any instances of LunaSession held in the application during the course of the reinitialize
can cause problems if they are returned to the session pool after the reinitialization takes place.

Cryptographic processing in the application should be halted until connection with the HSMs is back to a known
good state. It may be appropriate to hold operations in a queue for processing later or to return an Out of
Service message.

Once the objects have been released and no further processing will occur, the application should attempt
recovery of the connection. This is done through the com.safenetinc.luna.LunaSlotManager.reinitialize
method. This method will first clear session objects held within the provider before finalizing the library. After
the library is finalized, it will initialize it again by invoking the C_Initializemethod. This method will establish a
connection with all the HSMs if possible. The same isOK()method of LunaHAStatus can be used to
determine if the group has been recovered successfully.

It is also important to only have a single thread call the reinitializemethod. When multiple threads try to unload
or load the library at the same time, errors can occur.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 389

Chapter 7: Java Interfaces

Using Java Keytool with SafeNet Luna Network HSM
This page describes how to use the Java KeyTool application with the LunaProvider.

Limitations
The following limitations apply:

> You cannot use the importkeystore command to migrate keys from a Luna KeyStore to another KeyStore.

> Private keys cannot be extracted from the KeyStore unless you have the Key Export model of the HSM.

> By default secret keys created with the LunaProvider are non-extractable.

The example below uses a KeyStore file containing only the line “slot:0”. This tells the Luna KeyStore to use the
token in slot 0.

NOTE The Luna Keystore is not a physical file like a regular JKS. It is a virtual interface to the
HSM and contains only handles for the private key objects.

For information on creating keys through Key Generator or Key Factory classes please see the LunaProvider
Javadoc or the JCA/JCEAPI documentation.

Keys (with self signed certificates) can be generated using the keytool by specifying a valid Luna KeyStore file
and specifying the KeyStore type as “Luna”. The password presented to authenticate to the KeyStore is the
challenge password of the partition.

Example
keytool –genkeypair –alias myKey –keyalg RSA –sigalg SHA256withRSA –keystore keystore.luna –
storetype Luna
Enter keystore password:
What is your first and last name?
[Unknown]: test
What is the name of your organizational unit?
[Unknown]: codesigning
What is the name of your organization?
[Unknown]: SafeNet Inc
What is the name of your City or Locality?
[Unknown]: Ottawa
What is the name of your State or Province?
[Unknown]: ON
What is the two-letter country code for this unit?
[Unknown]: CA
Is CN=test, OU=codesigning, O=SafeNet Inc, L=Ottawa, ST=ON, C=CA correct?
[no]: yes
Enter key password for <myKey>
(RETURN if same as keystore password):

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 390

Chapter 7: Java Interfaces

Keytool Usage and Examples
The LunaProvider is unable to determine which PKCS#11 slot to use without providing a keystore file. This file
can be manually created to specify the desired slot by either the slot number or partition label. The naming of
the files is not important - only the contents.

The keytool examples below refer to a keystore file named bylabel.keystore. Its content is just one line:
tokenlabel:a-partition-name
where a-partition-name is the name of the partition you want the Java client to use.

Here is the (one line) content of a keystore file that specifies the partition by slot number:
slot:0
where 1 is the slot number of the partition you want the Java client to use.

To test that the Java configuration is correct, execute:
my-lunaclient:~/luna-keystores$ keytool -list -v -storetype Luna -keystore bylabel.keystore
The system requests the password of the partition and shows its contents.

Here is a sample command to create an RSA 2048 bit key with SHA256withRSA self-signed certificate. This
example uses java 6, other versions might be slightly different.

keytool -genkeypair -alias keyLabel -keyalg RSA -keysize 2048 -sigalg SHA256withRSA -storetype Luna -
keystore bylabel.keystore -validity 365
Enter keystore password:
What is your first and last name?
[Unknown]: mike

What is the name of your organizational unit?
[Unknown]: appseng

What is the name of your organization?
[Unknown]: safenet

What is the name of your City or Locality?
[Unknown]: ottawa

What is the name of your State or Province?
[Unknown]: on

What is the two-letter country code for this unit?
[Unknown]: ca

Is CN=mike, OU=appseng, O=safenet, L=ottawa, ST=on, C=ca correct?
[no]: yes

Enter key password for <keyLabel>
(RETURN if same as keystore password):

With the Luna provider there is no concept of a key password and anything entered is ignored.

The following is a more elaborate sequence of keytool usage where the final goal is to have the private key
generated in the HSM through keytool “linked” to its certificate.

Import CA certificate
It is mandatory to import the CA certificate – keytool verifies the chain before importing a client certificate:
my-lunaclient:~/luna-keystores$ keytool -importcert -storetype Luna -keystore bylabel.keystore -
alias root-mikeca -file mike_CA.crt
It is not required to import this certificate in the Java default cacerts keystore.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 391

Chapter 7: Java Interfaces

Generate private key
Generate the private key. It is not important that the sigalg specified matches the one used by the CA. You can
also have OU, O, L, ST, and C different from the ones in the CA certificate.
my-lunaclient:~/luna-keystores$ keytool -genkeypair -alias java-client2-key -keyalg RSA -keysize
2048 -sigalg SHA256withRSA -storetype Luna -keystore bylabel.keystore
Enter keystore password:
What is your first and last name?
[Unknown]: java-client2
What is the name of your organizational unit?
[Unknown]: SE
What is the name of your organization?
[Unknown]: SFNT
What is the name of your City or Locality?
[Unknown]: bgy
What is the name of your State or Province?
[Unknown]: bg
What is the two-letter country code for this unit?
[Unknown]: IT
Is CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT correct?
[no]: yes
Enter key password for <java-client2-key>
(RETURN if same as keystore password):
Verify that the private key is in the partition:
my-lunaclient:~/luna-keystores$ keytool -list -v -storetype Luna -keystore bylabel.keystore
Enter keystore password:
Keystore type: LUNA
Keystore provider: LunaProvider
Your keystore contains 2 entries
Alias name: root-mikeca
Creation date: Oct 4, 2012
Entry type: trustedCertEntry
Owner: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 1
Valid from: Thu Oct 04 09:02:00 CEST 2012 until: Tue Oct 04 09:02:00 CEST 2022
Certificate fingerprints:
 MD5: A2:15:4F:94:70:2B:D2:F7:C0:96:B1:47:F2:1D:03:E9
 SHA1: B3:4A:68:0A:8D:12:39:86:11:CE:EF:22:1B:D1:DE:8D:E9:19:2B:F4
 Signature algorithm name: SHA256withRSA
 Version: 3

Alias name: java-client2-key
Creation date: Oct 4, 2012
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 506d42dd
Valid from: Thu Oct 04 10:03:41 CEST 2012 until: Wed Jan 02 09:03:41 CET 2013
Certificate fingerprints:
 MD5: 7A:37:72:6B:8A:05:B6:49:91:70:0F:C4:04:1F:69:D9
 SHA1: 05:CD:9F:A5:37:0B:A6:A3:65:24:56:40:5E:29:2D:95:2D:53:8F:5F
 Signature algorithm name: SHA256withRSA
 Version: 3

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 392

Chapter 7: Java Interfaces

Create the CSR
Create the CSR to be submitted to the CA.
my-lunaclient:~/luna-keystores$ keytool -certreq -alias java-client2-key -file client2-mikeca.csr
-storetype Luna -keystore bylabel.keystore
Enter keystore password:
Now have the CSR signed by the CA. Have the issued certificate exported to include the certificate chain.
Without the chain, keytool fails with the error:
java.lang.Exception: Failed to establish chain from reply
If you do not have the chain, you can use the steps in the section below to build the chain yourself.

To translate a PKCS#7 exported certificate from DER format to PEM format use the following:
my-lunaclient $ openssl pkcs7 -inform der -in Luna_Key.p7b -outform pem -out Luna_Key-pem.p7b
Microsoft CA exports certificates with chain only in PKCS#7 PEM encoded format.

Import client certificate
Now import the client certificate:
user@myserver:~/luna-keystores$ keytool -importcert -storetype Luna -keystore bylabel.keystore -
alias java-client2-key -file java-client2.crt
Enter keystore password:
Certificate reply was installed in keystore
Ensure that it is linked to the private key generated previously – the chain length is not 1 (Certificate chain
length: 2)
user@myserver:~/luna-keystores$ keytool -list -v -storetype Luna -keystore bylabel.keystore
Enter keystore password:
Keystore type: LUNA
Keystore provider: LunaProvider
Your keystore contains 2 entries
Alias name: root-mikeca
Creation date: Oct 4, 2012
Entry type: trustedCertEntry
Owner: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 1
Valid from: Thu Oct 04 09:02:00 CEST 2012 until: Tue Oct 04 09:02:00 CEST 2022
Certificate fingerprints:
 MD5: A2:15:4F:94:70:2B:D2:F7:C0:96:B1:47:F2:1D:03:E9
 SHA1: B3:4A:68:0A:8D:12:39:86:11:CE:EF:22:1B:D1:DE:8D:E9:19:2B:F4
 Signature algorithm name: SHA256withRSA
 Version: 3

Alias name: java-client2-key
Creation date: Oct 4, 2012
Entry type: PrivateKeyEntry
Certificate chain length: 2
Certificate[1]:
Owner: CN=java-client2, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 5
Valid from: Thu Oct 04 10:07:00 CEST 2012 until: Fri Oct 04 10:07:00 CEST 2013
Certificate fingerprints:
 MD5: 4B:F0:9E:BC:EB:6A:88:2B:87:3A:76:35:7C:DE:4B:B4
 SHA1: F1:0C:BC:E3:A1:97:E4:8B:24:2D:44:43:7A:EA:71:52:B3:C3:20:D7
 Signature algorithm name: SHA256withRSA

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 393

Chapter 7: Java Interfaces

 Version: 3
Certificate[2]:
Owner: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Issuer: EMAILADDRESS=username@gemalto.com, CN=mike CA, OU=SE, O=SFNT, L=bgy, ST=bg, C=IT
Serial number: 1
Valid from: Thu Oct 04 09:02:00 CEST 2012 until: Tue Oct 04 09:02:00 CEST 2022
Certificate fingerprints:
 MD5: A2:15:4F:94:70:2B:D2:F7:C0:96:B1:47:F2:1D:03:E9
 SHA1: B3:4A:68:0A:8D:12:39:86:11:CE:EF:22:1B:D1:DE:8D:E9:19:2B:F4
 Signature algorithm name: SHA256withRSA
 Version: 3

How to build a certificate with chain ...
When you receive the client certificate without the chain, it is possible to build a PKCS#7 certificate that includes
the chain (and then feed it to keytool -importcert). In short, the “single” certificates without the chain can be
“stacked” together by manually editing a PEM cert file; this PEM cert file can then be translated into a PKCS#7
cert. How? Like this:

1. Prerequisites. Have all the certs in .crt format. The cert in this format is represented as an ASCII file starting
with the line
-----BEGIN CERTIFICATE-----

and ending with
-----END CERTIFICATE-----

For example, if the client cert is issued by a subCA and the subCA is signed by a root CA, you will have 3 cert
files – the client cert, the subCA cert, and the root CA cert. If the certs are not in .crt format, openssl can be
used to transform the format that you have into .crt format. See notes below.

2. Open a new text file, calling it, for example, cert-with-chain.crt. Insert into this file the content of the
certificates in the chains. For the above example, you must first insert the client cert, then the subCA cert,
then the root CA cert. The content of the file would then resemble the following:
-----BEGIN CERTIFICATE-----
 <-- client cert goes here
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
 <-- subCA cert goes here
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
 <-- root CA cert goes here
-----END CERTIFICATE-----

3. Use the following openssl command to convert the new certificate with chain, that you just created above, to
a PKCS#7 certificate with chain:
my-sa $ openssl crl2pkcs7 -nocrl -certfile HSM_Luna-manual-chain.crt -out HSM_Luna-manual-
chain.p7b -certfile root_CA.crt

4. Keytool is then able to import this .p7b certificate into the Luna keystore and correctly validate the chain.

Additional minor notes
1. Command to add a CA to the default CA cert store “cacerts”:

root@myserver:~# keytool -importcert -trustcacerts -alias root-mikeca -file /home/mike/luna-
keystores/mike_CA.crt -keystore /etc/java-6-sun/security/cacerts

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 394

Chapter 7: Java Interfaces

2. Use the following openssl command to convert a PKCS#7 certificate DER-encoded into a PKCS#7 PEM-
encoded certificate:
user@myserver:~/tmp/$ openssl pkcs7 -inform der -in java-client2.p7b -out java-client2-pem.p7b

3. Use the following openssl command to convert a PKCS#7 DER-encoded certificate into a .crt PEM
certificate:
user@myserver:~/tmp/$ openssl pkcs7 -print_certs -inform der -in mike_CA.p7b -out mike_CA-p7-2-
crt.crt

4. Use the following openssl command to convert a PEM certificate with chain to a PKCS#7 with chain:
user@myserver:~/tmp/$ openssl crl2pkcs7 -nocrl -certfile HSM_Luna-manual-chain.crt -out HSM_
Luna-manual-chain.p7b -certfile mike_CA.crt

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 395

CHAPTER 8: Microsoft Interfaces

This chapter describes the Microsoft interfaces to the PKCS#11 API. It contains the following topics:

> "SafeNet CSP Registration Utilities" below

> "SafeNet KSP for CNGRegistration Utilities" on page 400

> "SafeNet CSP Calls and Functions" on page 405

SafeNet CSP Registration Utilities
This section describes how to use the SafeNet CSP registration tool and related utilities to configure the Luna
HSM client to use a SafeNet Luna Network HSM with Microsoft Certificate Services. You must be the client
Administrator or a member of the Administrators group to run the SafeNet CSP tools.

The SafeNet CSP can be used by any application that acquires the context of the SafeNet CSP. All users who
log in and use the applications that acquired the context have access to the SafeNet CSP. After you register the
SafeNet Luna Network HSM partitions with SafeNet CSP, your CSP and KSP code should work the same
whether the SafeNet Luna Network HSM (crypto provider) or the default provider is selected.

The SafeNet CSP is an optional client feature. During client installation, selectCSP (CAPI) / KSPCNG) to
install it. To install the feature later, run the client installer again, select the option, and clickModify.
By default, the SafeNet CSP utilities are installed in <client_install_dir>/CSP. The installation includes
LunaCSP.dll, the library used by CSP to interact with Cryptoki.dll, and the following utilities:
> "register" below

• "Registering Partitions/HA Groups to CSP" on the next page

• "Registering Cryptographic Algorithms to be Used in Software" on page 398

• "Enabling KeyCounting" on page 398

> "ms2Luna" on page 398—Used to migrate Microsoft CSP keys to a SafeNet Luna Network HSM
partition

> "keymap" on page 399—Used to manage keys on the partition for use with Microsoft CSP

register
You can use the CSP registration tool (<client_install_dir>/CSP/register.exe) to perform the following
functions:

> Register application partitions/HA groups and their passwords/challenge secrets for use with the SafeNet
CSP (see "Registering Partitions/HA Groups to CSP" on the next page).

> Register which non-RSA cryptographic algorithms you want performed in software only (see "Registering
Cryptographic Algorithms to be Used in Software" on page 398).

> Enable key counting in KSP/CSP (see "Enabling KeyCounting" on page 398).

> Register the provider library with the Windows OS to make it available for applications.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 396

Chapter 8: Microsoft Interfaces

Syntax
register.exe [/partition | /algorithms | /library | /usagelimit] [/highavail] [/strongprotect] [/cryptouser]
[/?]

Argument Shortcut Description

/algorithms /a Register algorithms that will be used in software by Microsoft CSP (i.e. not on the
HSM). Only non-RSA algorithms can be configured to run in software; RSA
algorithms will always run on the HSM hardware.

/cryptouser /c Register the password/challenge for the Crypto User (read-only crypto role). If this
option is not specified, the Crypto Officer password/challenge is registered.

/highavail /h Register the virtual partition of a high-availability (HA) group.

/library /l Register the library and associated provider names for use with CSP. The following
providers are registered:
> Luna enhanced RSA and AES provider for Microsoft Windows
> Luna Cryptographic Services for Microsoft Windows
> Luna SChannel Cryptography Services for Microsoft Windows

NOTE This operation is deprecated; library registration is automatic.

/partition /p Register a partition and its password/challenge. You are prompted to select which
available partitions to register to the CSP.
This is the default option. If you type registerwith no additional parameters, then
/partition is assumed. For example, register /strongprotect is the same as
register /partition /strongprotect.

/strongprotect /s Strongly protect the challenge for registered partitions. This option ensures that
only existing client users can access the CSP partitions. After running register
/strongprotect, new users are not allowed to use CSP.

/usagelimit /u Set themaximum usage limit for RSA keys using CSP. Enter 0 to register
unlimited uses.

Registering Partitions/HA Groups to CSP
Use the "register" on the previous page utility to register application partitions or HA virtual slots to the
CSP. The Crypto Officer or Crypto User must complete this procedure, depending on which role you wish to
use.

NOTE You cannot register a combination of HA groups and application partitions; either
physical or virtual slots may be registered to the CSP at one time.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 397

Chapter 8: Microsoft Interfaces

To register an application partition or HA group to the CSP

1. In a command prompt, navigate to the SafeNet CSP install directory and register the desired application
partition(s) or HA group(s). Specify /cryptouser to register the CU role. Otherwise, the CO role will be
registered. If you want to register both roles, you can run the command twice, once with /cryptouser and
once without.

"register" on page 396 [/highavail] [/cryptouser]
You are prompted (y/n) to decide whether to register each available partition or HA virtual slot.

2. Install and/or configure your application(s).
3. Run each of your applications once to use SafeNet CSP.
4. Ensure the security of the registered role passwords/challenges by specifying /strongprotect.

"register" on page 396 /strongprotect
You can now run all applications as usual.

Registering Cryptographic Algorithms to be Used in Software
Certain symmetric operations such as hashing may be completed faster in software than on the SafeNet Luna
Network HSM. The register /algorithms command allows you to choose which algorithms to de-register from
the SafeNet Luna Network HSM. This may improve performance for operations that use these algorithms, but
there is a security cost (exposing the operation in software). Signing and other asymmetric operations are
always done on the HSM.

To register algorithms for software-only use

1. In a command prompt, navigate to the SafeNet CSP install directory and register the desired algorithms to
be used in software.

"register" on page 396 /algorithms
You are prompted (y/n) to decide whether each available algorithm should be used in software.

Enabling Key Counting
Key counting allows you to specify the maximum number of times that a key can be used.

To enable key counting

1. In a command prompt, navigate to the SafeNet CSP install directory and register the key usage limit.

"register" on page 396 /usagelimit
You are prompted to enter a key usage limit. You can turn the feature off (unlimited uses) by entering 0.

ms2Luna
Use thems2Luna utility (<client_install_dir>/CSP/ms2Luna.exe) to migrate existing Microsoft CSP keys held
in software to a registered partition/HA group on the SafeNet Luna Network HSM. It requires the thumbprint of
a certificate held in the client's keystore.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 398

Chapter 8: Microsoft Interfaces

Prerequisites
> You must already have registered a partition/HA group using the "register" on page 396 utility.
> Private keys must be exportable to be migrated to the HSM.

To migrate Microsoft CSP keys to the SafeNet Luna Network HSM

1. In a command prompt, navigate to the SafeNet CSP install directory and migrate your existing keys to the
HSM.

ms2Luna
You are prompted for the CSP certificate thumbprint.

keymap
Use the keymap utility (<client_install_dir>/CSP/keymap.exe) to manage keys for use with CSP. CSP needs
three objects for a certificate to work:

> Private key

> Public key

> A container: data object containing the certificate's association with the keys

A container is automatically created for all keypairs created using the CSP. For existing keypairs that were
created outside the CSP, you must create a container and associate it with each keypair to make them
available to the CSP.

When you run the keymap utility and select an available slot, the following options are available:

Option Name Description

1 Browse Objects List the objects on the slot (public keys, private keys, and containers) that can be
used by the CSP.

2 Create Key
Container

Create a key container that can be used by the CSP.

3 View Key
Container

Display information about a key container and the keys associated with it.

4 Associate Keys
With Container

Map a keypair to an existing container. There are two possible algorithm
mappings, depending on the intended purpose of the keypair:
> Signature: keypair will be used for signing operations
> Exchange: keypair will be used for key exchange

5 Do Nothing Take no action.

99 Destroy Key
Container

Destroy a key container object. This has no effect on the keys associated with a
container.

0 Exit Exit the keymap utility.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 399

Chapter 8: Microsoft Interfaces

SafeNet KSP for CNG Registration Utilities
CNG (Cryptography Next Generation) is Microsoft's cryptographic application programming interface (API),
replacing the older Windows cryptoAPI (CAPI). CNG adds new algorithms along with additional flexibility and
functionality. Thales Group provides SafeNet CSP for applications running in older Windows crypto
environments (running CAPI), and SafeNet KSP for newer Windows clients (running CNG). Consult Microsoft
documentation to determine which one is appropriate for your client operating system.

KSPmust be installed on any computer that is intended to act via CNG as a client of the HSM, running crypto
operations in hardware. You need KSP to integrate SafeNet cryptoki with CNG and to use the newer functions
and algorithms in Microsoft IIS.

After you register the SafeNet Luna Network HSM partitions with SafeNet KSP, your KSP code should work the
same whether a SafeNet HSM (crypto provider) or the default provider is selected.

NOTE Be aware when working in a mixed environment or updating applications that
previously used CAPI and the SafeNet CSP - the new algorithms supported by CNG (such as
SHA512 and ECDSA) in Certificate Services are not recognized by systems that use CAPI. If
Certificate Services is configured to use any of these new algorithms then the signed
certificates can be installed only on systems that are aware of these new algorithms. Any of
the systems that use CAPI will not be able to use this feature and certificate installation will fail.

The SafeNet KSP is an optional client feature. During client installation, selectCSP (CAPI) / KSPCNG) to
install it. To install the feature later, run the client installer again, select the option, and clickModify.
By default, the SafeNet KSP utilities are installed in <client_install_dir>/KSP. The installation includes the
following utilities:

> "kspcmd" below
• "Configuring the KSP Using the Command Line" on the next page

> "KspConfig" on page 402
• "Configuring the KSP Using theGUI" on page 402

> "ms2Luna" on page 403—Used to migrate Microsoft CSP keys to a SafeNet Luna Network HSM
partition

> "ksputil" on page 404—Used to display and manage partition keys that are visible to the KSP

kspcmd
You can use this utility (<client_install_dir>/KSP/kspcmd.exe) to register the KSP library and partitions via the
Windows command line.

NOTE To register the library and partitions using a GUI, use "KspConfig" on page 402. It
is unnecessary to use both utilities.

Syntax
kspcmd.exe

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 400

Chapter 8: Microsoft Interfaces

library <path\cryptoki.dll>
password /s <slot_label> [/u <username>] [/d <domain>]
usagelimit
viewslots

Argument Shortcut Description

library <path\cryptoki.dll> l Register the library and associated provider names with KSP.

password p Register the designated slot and its Crypto Officer
password/challenge to the KSP. You can specify the following
options:

/s <slot_label> [Mandatory] The label of the partition being
registered to the KSP.

/u <username> [Optional] The username to register for this
partition. If this is not specified, all users on
the client will be able to access this partition
via KSP.

/d <domain> [Optional] The domain to register for this
partition.

usagelimit u Set themaximum usage limit for RSA keys using KSP. Enter 0 to
register unlimited uses.

viewslots v Display the registered slots by user/domain.

Configuring the KSP Using the Command Line
You can use the "kspcmd" on the previous page command-line tool to configure the KSP for use with your
partitions. The Crypto Officer must complete this procedure using Administrator privileges on the client.

You can register the following user/domain combinations with the KSP:

> Administrator user with the domain specific to the client. Default Windows domains are in the formatWIN-
XXXXXXXXXXX.

> SYSTEM user with the NT-AUTHORITY domain

The configuration tool registers a Crypto Officer password/challenge to a specific user, so that only that user
can unlock the partition.

To configure the KSP using the command line

1. In a command line, navigate to the SafeNet KSP install directory and register the cryptoki.dll library to the
KSP.

"kspcmd" on the previous page library /s <path\cryptoki.dll> [/u <username>] [/d <domain>]
2. Register the designated slot and its Crypto Officer password/challenge to the KSP.

"kspcmd" on the previous page password /s <slot_label> [/u <username>] [/d <domain>]
You are prompted to enter the CO password/challenge for the slot.

3. [Optional] Display the registered slots to ensure that registration is complete.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 401

Chapter 8: Microsoft Interfaces

"kspcmd" on page 400 viewslots
4. [Optional] Set the maximum usage limit for RSA keys using KSP.

"kspcmd" on page 400 usagelimit
You are prompted to enter a usage limit. Enter 0 to register unlimited uses.

KspConfig
You can use this tool (<client_install_dir>\KSP\KspConfig.exe) to register the KSP library and partitions using
a GUI.

NOTE To register the library and partitions using the command line, use "kspcmd" on
page 400. It is unnecessary to use both utilities.

Configuring the KSP Using the GUI
You can use the "KspConfig" above utility to configure the KSP for use with your partitions. The Crypto
Officer must complete this procedure using Administrator privileges on the client.

You can register the following user/domain combinations with the KSP:

> Administrator user with the domain specific to the client. Default Windows domains are in the formatWIN-
XXXXXXXXXXX.

> SYSTEM user with the NT-AUTHORITY domain

The configuration tool registers a Crypto Officer password/challenge to a specific user, so that only that user
can unlock the partition.

To configure the KSP using the GUI

1. In Windows Explorer, navigate to the SafeNet KSP install directory and launch "KspConfig" above as the
Administrator user.

2. In the left panel, double-clickRegister or View Security Library. Enter the filepath to cryptoki.dll or click
Browse to locate it.

<client_install_dir>\cryptoki.dll

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 402

Chapter 8: Microsoft Interfaces

ClickRegister to complete the registration.
3. In the left panel, double-clickRegister HSM Slots. Select the Administrator user, client domain, and an

available slot to register. Enter the CO password/challenge and clickRegister Slot.

4. Select the SYSTEM user and NT-AUTHORITY domain and register for the slot.

5. Repeat steps 3-4 for any other available slots you want to register with the KSP.
You can now begin using your applications to perform crypto operations on the registered slots.

ms2Luna
Use thems2Luna utility (<client_install_dir>/KSP/ms2Luna.exe) to migrate existing Microsoft KSP keys held
in software to a registered partition/HA group on the SafeNet Luna Network HSM. It requires the thumbprint of
a certificate held in the client's keystore.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 403

Chapter 8: Microsoft Interfaces

Prerequisites
> You must already have registered a partition/HA group using the "kspcmd" on page 400 or

"KspConfig" on page 402 utility.
> Private keys must be exportable to be migrated to the HSM.

To migrate Microsoft KSP keys to the SafeNet Luna Network HSM

1. In a command prompt, navigate to the SafeNet KSP install directory and migrate your existing keys to the
HSM.

ms2Luna
You are prompted for the KSP certificate thumbprint.

ksputil
KSP binds machine keys to the hostname of the crypto server that created the keys. You can use the
"ksputil" above utility to display and manage keys that are visible to the KSP.

Syntax
ksputil

clusterkeys /s <slotnum> /n <keyname> /t <target>
listkeys /s <slotnum> [/user]

Argument Shortcut Description

clusterkeys c Bind a specified keypair to a different server domain. Note that this does not change
the bindings of existing keys; it creates a copy of the original keypair that is bound to
the new domain.
Available options:

/s <slotnum> [Mandatory] The slot number of the partition where the key(s)
are located.

/n <keyname> [Mandatory] The name of the key(s) to bind to the new
domain.

/d <domain> [Mandatory] The domain to which keys will be bound.

listkeys l DIsplay a list of KSP-visible keys.
Available options:

/s <slotnum> [Mandatory] The slot number of the partition where the key(s)
are located.

/user [Optional] List keys bound to the currently logged-in
user/hostname.

Algorithms Supported
Here, for comparison, are the algorithms supported by our CSP and KSPAPIs.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 404

Chapter 8: Microsoft Interfaces

Algorithms supported by the SafeNet CSP
CALG_RSA_SIGN

CALG_RSA_KEYX

CALG_RC2

CALG_RC4

CALG_RC5

CALG_DES

CALG_3DES_112

CALG_3DES

CALG_MD2

CALG_MD5

CALG_SHA

CALG_SHA_256

CALG_SHA_384

CALG_SHA_512

CALG_MAC

CALG_HMAC

Algorithms supported by the SafeNet KSP
NCRYPT_RSA_ALGORITHM

NCRYPT_DSA_ALGORITHM

NCRYPT_ECDSA_P256_ALGORITHM

NCRYPT_ECDSA_P384_ALGORITHM

NCRYPT_ECDSA_P521_ALGORITHM

NCRYPT_ECDH_P256_ALGORITHM

NCRYPT_ECDH_P384_ALGORITHM

NCRYPT_ECDH_P521_ALGORITHM

NCRYPT_DH_ALGORITHM

NCRYPT_RSA_ALGORITHM

SafeNet CSP Calls and Functions
For integration with Microsoft Certificate Services and other applications, the LunaCSP.dll library accepts Crypt
calls and gives access to token functions (via CP calls) as listed in this section. Key pairs and certificates are
generated, stored and used on the SafeNet Luna Network HSM.

The diagram below depicts the relationship of the SafeNet components to the other layers in the certificate
system.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 405

Chapter 8: Microsoft Interfaces

Figure 1: SafeNet CSP architecture

Note, in the diagram, that the SafeNet CSP routes relevant calls through the statically linked Crystoki library to
the HSM via CP calls. Other calls from the application layer – those not directed at the token/HSM, and not
matching the SafeNet CSP supported functions (see next section) – are passed to the Microsoft CSP.

Programming for SafeNet Luna Network HSM with SafeNet CSP
The SafeNet CSPDLL exports the following functions, each one corresponding to an equivalent (and similarly
named) Crypt call from the application layer:

> CPAcquireContext

> CPGetProvParam

> CPSetProvParam

> CPReleaseContext

> CPDeriveKey

> CPDestroyKey

> CPDuplicateKey

> CPExportKey

> CPGenKey

> CPGenRandom

> CPGetKeyParam

> CPGetUserKey

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 406

Chapter 8: Microsoft Interfaces

> CPImportKey

> CPSetKeyParam

> CPDecrypt

> CPEncrypt

> CPCreateHash

> CPDestroyHash

> CPGetHashParam

> CPHashData

> CPHashSessionKey

> CPSetHashParam

> CPSignHash

> CPVerifySignature

NOTE The CPVerifySignature function is able to verify signatures of up to 2048 bits,
regardless of the size of the signatures produced by CPSignHash. This ensures that the CSP
is able to validate all compatible certificates, even those signed with large keys.

The MSDN (Microsoft Developers Network) web site provides syntax and descriptions of the corresponding
Crypt calls that invoke the functions in the above list.

Algorithms
SafeNet CSP supports the following algorithms:

> CALG_RSA_SIGN [RSASignature] [256 - 4096 bits]. The CSP uses the RSAPublic-Key Cipher for digital
signatures.

> CALG_RSA_KEYX [RSAKey Exchange] [256- 4096 bits] The CSPmust use the RSAPublic-Key Cipher key
exchange. The exchange key pair can be used both to exchange session keys and to verify digital
signatures.

> CALG_RC2 [RSAData Securities RC2 (block cipher)] [8 - 1024 bits].

> CALG_RC4 [RSAData Securities RC4 (stream cipher)] [8 - 2048 bits].

> CALG_RC5 [RSAData Securities RC5 (block cipher)] [8 - 2048 bits].

> CALG_DES [Data Encryption Standard (block cipher)] [56 bits].

> CALG_3DES_112 [Double DES (block cipher)] [112 bits].

> CALG_3DES [Triple DES (block cipher)] [168 bits].

> CALG_MAC [Message Authentication Code] (with RC2 only).

> CALG_HMAC [Hash-based MAC].

> CALG_MD2 [Message Digest 2 (MD2)] [128 bits].

> CALG_MD5 [Message Digest 5 (MD5)] [128 bits].

> CALG_SHA [Secure Hash Algorithm (SHA-1)] [160 bits].

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 407

Chapter 8: Microsoft Interfaces

> CALG_SHA224 [Secure Hash Algorithm (SHA-2)] [224 bits].

> CALG_SHA256 [Secure Hash Algorithm (SHA-2)] [256 bits].

> CALG_SHA384 [Secure Hash Algorithm (SHA-2)] [384 bits].

> CALG_SHA512 [Secure Hash Algorithm (SHA-2)] [512 bits].

NOTE If you intend to perform key exchanges between the SafeNet CSP and the Microsoft
CSPwith RC2 keys, the attribute KP_ EFFECTIVE_KEYLENmust be set to 128 bits. For RC2
and RC4, the salt value of the keys must be transferred by making a call to get the salt value of
the original key and to set the salt value of an imported key. This is done with the
CryptGetKeyParam(KP_ SALT) and CryptSetKeyParam(KP_ SALT) functions respectively.

SafeNet Luna NetworkHSM 10.1 SDKReferenceGuide
007-000553-001 Rev. A 23 January 2020 Copyright 2001-2020 Thales 408

	Preface: About the SDK Reference Guide
	Customer Release Notes
	Audience
	Document Conventions
	Support Contacts

	Chapter 1: SafeNet SDK Overview
	Supported Cryptographic Algorithms
	Application Programming Interface (API) Overview
	Sample Application
	A Note About RSA Key Attributes ‘p’ and ‘q’

	What Does 'Supported' Mean?
	Why Is an Integration Not Listed Here Or On the Website?

	Frequently Asked Questions

	Chapter 2: PKCS#11 Support
	PKCS#11 Compliance
	Supported PKCS#11 Services
	Additional Functions

	Using the PKCS#11 Sample
	The SfntLibPath Environment Variable
	What p11Sample Does

	Chapter 3: Extensions to PKCS#11
	SafeNet Luna Extensions to PKCS#11
	HSM Configuration Settings
	SafeNet Luna Network HSM-Specific Commands
	Commands Not Available Through Libraries
	Configuration Settings

	Secure PIN Port Authentication
	High Availability Indirect Login Functions
	Initialization functions
	Recovery Functions
	Login Key Attributes
	Control of HA Functionality

	MofN Secret Sharing (quorum or multi-person access control)
	Key Export Features
	RSA Key Component Wrapping

	Derivation of Symmetric Keys with 3DES_ECB
	PKCS#11 Extension HA Status Call
	Function Definition

	Counter Mode KDF Mechanisms
	BIP32 Mechanism Support and Implementation
	Curve Support
	Key Type and Form
	Extended Keys and Hardened Keys
	Key Derivation
	Error Codes
	Key Attributes
	Public Key Import/Export
	Private Key Import/Export
	Key Backup and Cloning
	Non-FIPS Algorithm
	Host Tools
	Code Samples

	Derive Template
	Examples

	Chapter 4: Supported Mechanisms
	CKM_AES_CBC
	CKM_AES_CBC_ENCRYPT_DATA
	CKM_AES_CBC_PAD
	CKM_AES_CBC_PAD_IPSEC
	CKM_AES_CFB8
	CKM_AES_CFB128
	CKM_AES_CMAC
	CKM_AES_CMAC_GENERAL
	CKM_AES_CTR
	CKM_AES_ECB
	CKM_AES_ECB_ENCRYPT_DATA
	CKM_AES_GCM
	CKM_AES_GMAC
	CKM_AES_KEY_GEN
	CKM_AES_KW
	CKM_AES_KWP
	CKM_AES_MAC
	CKM_AES_MAC_GENERAL
	CKM_AES_OFB
	CKM_AES_XTS
	CKM_ARIA_CBC
	CKM_ARIA_CBC_ENCRYPT_DATA
	CKM_ARIA_CBC_PAD
	CKM_ARIA_CFB8
	CKM_ARIA_CFB128
	CKM_ARIA_CMAC
	CKM_ARIA_CMAC_GENERAL
	CKM_ARIA_CTR
	CKM_ARIA_ECB
	CKM_ARIA_ECB_ENCRYPT_DATA
	CKM_ARIA_KEY_GEN
	CKM_ARIA_L_CBC
	CKM_ARIA_L_CBC_PAD
	CKM_ARIA_L_ECB
	CKM_ARIA_L_MAC
	CKM_ARIA_L_MAC_GENERAL
	CKM_ARIA_MAC
	CKM_ARIA_MAC_GENERAL
	CKM_ARIA_OFB
	CKM_BIP32_CHILD_DERIVE
	CKM_BIP32_MASTER_DERIVE
	CKM_CAST3_CBC
	CKM_CAST3_CBC_PAD
	CKM_CAST3_ECB
	CKM_CAST3_KEY_GEN
	CKM_CAST3_MAC
	CKM_CAST3_MAC_GENERAL
	CKM_CAST5_CBC
	CKM_CAST5_CBC_PAD
	CKM_CAST5_ECB
	CKM_CAST5_KEY_GEN
	CKM_CAST5_MAC
	CKM_CAST5_MAC_GENERAL
	CKM_DES_CBC
	CKM_DES_CBC_ENCRYPT_DATA
	CKM_DES_CBC_PAD
	CKM_DES_CFB8
	CKM_DES_CFB64
	CKM_DES_ECB
	CKM_DES_ECB_ENCRYPT_DATA
	CKM_DES_KEY_GEN
	CKM_DES_MAC
	CKM_DES_MAC_GENERAL
	CKM_DES_OFB64
	CKM_DES2_DUKPT_DATA
	CKM_DES2_DUKPT_DATA_RESP
	CKM_DES2_DUKPT_MAC
	CKM_DES2_DUKPT_MAC_RESP
	CKM_DES2_DUKPT_PIN
	CKM_DES2_KEY_GEN
	CKM_DES3_CBC
	CKM_DES3_CBC_ENCRYPT_DATA
	CKM_DES3_CBC_PAD
	CKM_DES3_CBC_PAD_IPSEC
	CKM_DES3_CMAC
	CKM_DES3_CMAC_GENERAL
	CKM_DES3_CTR
	CKM_DES3_ECB
	CKM_DES3_ECB_ENCRYPT_DATA
	CKM_DES3_KEY_GEN
	CKM_DES3_MAC
	CKM_DES3_MAC_GENERAL
	CKM_DES3_X919_MAC
	CKM_DH_PKCS_DERIVE
	CKM_DH_PKCS_KEY_PAIR_GEN
	CKM_DH_PKCS_PARAMETER_GEN
	CKM_DSA
	CKM_DSA_KEY_PAIR_GEN
	CKM_DSA_PARAMETER_GEN
	CKM_DSA_SHA1
	CKM_DSA_SHA224
	CKM_DSA_SHA256
	CKM_EC_EDWARDS_KEY_PAIR_GEN
	CKM_EC_KEY_PAIR_GEN
	CKM_EC_KEY_PAIR_GEN_W_EXTRA_BITS
	CKM_EC_MONTGOMERY_KEY_PAIR_GEN
	CKM_ECDH1_COFACTOR_DERIVE
	CKM_ECDH1_DERIVE
	CKM_ECDSA
	CKM_ECDSA_GBCS_SHA256
	CKM_ECDSA_SHA1
	CKM_ECDSA_SHA224
	CKM_ECDSA_SHA256
	CKM_ECDSA_SHA384
	CKM_ECDSA_SHA512
	CKM_ECIES
	CKM_EDDSA
	CKM_EDDSA_NACL
	CKM_GENERIC_SECRET_KEY_GEN
	CKM_HAS160
	CKM_KCDSA_HAS160
	CKM_KCDSA_HAS160_NO_PAD
	CKM_KCDSA_KEY_PAIR_GEN
	CKM_KCDSA_PARAMETER_GEN
	CKM_KCDSA_SHA1
	CKM_KCDSA_SHA1_NO_PAD
	CKM_KCDSA_SHA224
	CKM_KCDSA_SHA224_NO_PAD
	CKM_KCDSA_SHA256
	CKM_KCDSA_SHA256_NO_PAD
	CKM_KCDSA_SHA384
	CKM_KCDSA_SHA384_NO_PAD
	CKM_KCDSA_SHA512
	CKM_KCDSA_SHA512_NO_PAD
	CKM_KEY_WRAP_SET_OAEP
	CKM_MD2
	CKM_MD2_KEY_DERIVATION
	CKM_MD5_HMAC
	CKM_MD5_HMAC_GENERAL
	CKM_MD5_KEY_DERIVATION
	CKM_NIST_PRF_KDF
	CKM_PBE_MD2_DES_CBC
	CKM_PBE_SHA1_CAST5_CBC
	CKM_PBE_SHA1_DES2_EDE_CBC
	CKM_PBE_SHA1_DES2_EDE_CBC_OLD
	CKM_PBE_SHA1_DES3_EDE_CBC
	CKM_PBE_SHA1_DES3_EDE_CBC_OLD
	CKM_PBE_SHA1_RC2_40_CBC
	CKM_PBE_SHA1_RC2_128_CBC
	CKM_PBE_SHA1_RC4_40
	CKM_PBE_SHA1_RC4_128
	CKM_PKCS5_PBKD2
	CKM_PRF_KDF
	CKM_RC2_CBC
	CKM_RC2_CBC_PAD
	CKM_RC2_ECB
	CKM_RC2_KEY_GEN
	CKM_RC2_MAC
	CKM_RC2_MAC_GENERAL
	CKM_RC4
	CKM_RC4_KEY_GEN
	CKM_RC5_CBC
	CKM_RC5_CBC_PAD
	CKM_RC5_ECB
	CKM_RC5_KEY_GEN
	CKM_RC5_MAC
	CKM_RC5_MAC_GENERAL
	CKM_RSA_FIPS_186_3_AUX_PRIME_KEY_PAIR_GEN
	CKM_RSA_FIPS_186_3_PRIME_KEY_PAIR_GEN
	CKM_RSA_PKCS
	CKM_RSA_PKCS_KEY_PAIR_GEN
	CKM_RSA_PKCS_OAEP
	CKM_RSA_PKCS_PSS
	CKM_RSA_X_509
	CKM_RSA_X9_31
	CKM_RSA_X9_31_KEY_PAIR_GEN
	CKM_RSA_X9_31_NON_FIPS
	CKM_SEED_CBC
	CKM_SEED_CBC_PAD
	CKM_SEED_CMAC
	CKM_SEED_CMAC_GENERAL
	CKM_SEED_CTR
	CKM_SEED_ECB
	CKM_SEED_KEY_GEN
	CKM_SEED_MAC
	CKM_SEED_MAC_GENERAL
	CKM_SHA_1
	CKM_SHA_1_HMAC
	CKM_SHA_1_HMAC_GENERAL
	CKM_SHA1_EDDSA
	CKM_SHA1_EDDSA_NACL
	CKM_SHA1_KEY_DERIVATION
	CKM_SHA1_RSA_PKCS
	CKM_SHA1_RSA_PKCS_PSS
	CKM_SHA1_RSA_X9_31
	CKM_SHA1_RSA_X9_31_NON_FIPS
	CKM_SHA224
	CKM_SHA224_EDDSA
	CKM_SHA224_EDDSA_NACL
	CKM_SHA224_HMAC
	CKM_SHA224_HMAC_GENERAL
	CKM_SHA224_KEY_DERIVATION
	CKM_SHA224_RSA_PKCS
	CKM_SHA224_RSA_PKCS_PSS
	CKM_SHA224_RSA_X9_31
	CKM_SHA224_RSA_X9_31_NON_FIPS
	CKM_SHA256
	CKM_SHA256_EDDSA
	CKM_SHA256_EDDSA_NACL
	CKM_SHA256_HMAC
	CKM_SHA256_HMAC_GENERAL
	CKM_SHA256_KEY_DERIVATION
	CKM_SHA256_RSA_PKCS
	CKM_SHA256_RSA_PKCS_PSS
	CKM_SHA256_RSA_X9_31
	CKM_SHA256_RSA_X9_31_NON_FIPS
	CKM_SHA384
	CKM_SHA384_EDDSA
	CKM_SHA384_EDDSA_NACL
	CKM_SHA384_HMAC
	CKM_SHA384_HMAC_GENERAL
	CKM_SHA384_KEY_DERIVATION
	CKM_SHA384_RSA_PKCS
	CKM_SHA384_RSA_PKCS_PSS
	CKM_SHA384_RSA_X9_31
	CKM_SHA384_RSA_X9_31_NON_FIPS
	CKM_SHA512
	CKM_SHA512_EDDSA
	CKM_SHA512_EDDSA_NACL
	CKM_SHA512_HMAC
	CKM_SHA512_HMAC_GENERAL
	CKM_SHA512_KEY_DERIVATION
	CKM_SHA512_RSA_PKCS
	CKM_SHA512_RSA_PKCS_PSS
	CKM_SHA512_RSA_X9_31
	CKM_SHA512_RSA_X9_31_NON_FIPS
	CKM_SM3
	CKM_SM3_HMAC
	CKM_SM3_HMAC_GENERAL
	CKM_SM3_KEY_DERIVATION
	CKM_SSL3_KEY_AND_MAC_DERIVE
	CKM_SSL3_MASTER_KEY_DERIVE
	CKM_SSL3_MD5_MAC
	CKM_SSL3_PRE_MASTER_KEY_GEN
	CKM_SSL3_SHA1_MAC
	CKM_X9_42_DH_DERIVE
	CKM_X9_42_DH_HYBRID_DERIVE
	CKM_X9_42_DH_KEY_PAIR_GEN
	CKM_X9_42_DH_PARAMETER_GEN
	CKM_XOR_BASE_AND_DATA_W_KDF

	Chapter 5: Using the SafeNet SDK
	Libraries and Applications
	SafeNet SDK Applications General Information
	Compiler Tools
	Using CKlog

	Application IDs
	Shared Login State and Application IDs

	Named Curves and User-Defined Parameters
	Curve Validation Limitations
	Storing Domain Parameters
	Using Domain Parameters
	User Friendly Encoder
	Application Interfaces

	Supported ECC Curves
	Capability and Policy Configuration Control Using the SafeNet API
	HSM Capabilities and Policies
	HSM Partition Capabilities and Policies
	Policy Refinement
	Policy Types
	Querying and Modifying HSM Configuration

	Connection Timeout
	Linux and Unix Connection Timeout
	Windows Connection Timeout

	Chapter 6: Design Considerations
	PED-Authenticated HSMs
	About CKDemo with Luna PED
	Interchangeability
	Startup
	Cloning of Tokens

	High Availability (HA) Implementations
	Detecting the Failure of an HA Member

	Key Attribute Defaults
	Vendor-defined key attributes

	Object Usage Count
	Migrating Keys From Software to a SafeNet Luna Network HSM
	Other Formats of Key Material
	Sample Program

	Audit Logging
	Audit Log Records
	Audit Log Message Format
	Log External

	Chapter 7: Java Interfaces
	SafeNet JSP Overview and Installation
	Installation
	JSP Registration
	Post-Installation Tasks

	SafeNet JSP Configuration
	SafeNet Java Security Provider
	Keytool
	Cleaning Up
	PKCS#11/JCA Interaction

	The JCPROV PKCS#11 Java Wrapper
	JCPROV Overview
	Installing JCPROV
	JCPROV Sample Programs
	JCPROV Sample Classes
	JCPROV API Documentation

	Java or JSP Errors
	Re-Establishing a Connection Between Your Java Application and SafeNet Luna N...
	Recovering From the Loss of All HA Members
	When to Use the reinitialize Method
	Why the Method Must Be Used
	What Happens on the HSM

	Using Java Keytool with SafeNet Luna Network HSM
	Limitations

	Keytool Usage and Examples
	Import CA certificate
	Generate private key
	Create the CSR
	Import client certificate
	How to build a certificate with chain ...
	Additional minor notes

	Chapter 8: Microsoft Interfaces
	SafeNet CSP Registration Utilities
	register
	ms2Luna
	keymap

	SafeNet KSP for CNG Registration Utilities
	kspcmd
	KspConfig
	ms2Luna
	ksputil
	Algorithms Supported

	SafeNet CSP Calls and Functions
	Programming for SafeNet Luna Network HSM with SafeNet CSP
	Algorithms

